Abstract
Human re-rendering from a single image is a starkly underconstrained problem, and state-of-the-art algorithms often exhibit undesired artefacts, such as over-smoothing, unrealistic distortions of the body parts and garments, or implausible changes of the texture. To address these challenges, we propose a new method for neural re-rendering of a human under a novel user-defined pose and viewpoint, given one input image. Our algorithm represents body pose and shape as a parametric mesh which can be reconstructed from a single image and easily reposed. Instead of a colour-based UV texture map, our approach further employs a learned high-dimensional UV feature map to encode appearance. This rich implicit representation captures detailed appearance variation across poses, viewpoints, person identities and clothing styles better than learned colour texture maps. The body model with the rendered feature maps is fed through a neural image-translation network that creates the final rendered colour image. The above components are combined in an end-to-end-trained neural network architecture that takes as input a source person image, and images of the parametric body model in the source pose and desired target pose. Experimental evaluation demonstrates that our approach produces higher quality single-image re-rendering results than existing methods.
Project webpage: http://gvv.mpi-inf.mpg.de/projects/NHRR/.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S.M., Szeliski, R.: Building Rome in a day. Commun. ACM 54(10), 105–112 (2011)
Alldieck, T., Pons-Moll, G., Theobalt, C., Magnor, M.: Tex2shape: detailed full human body geometry from a single image. In: International Conference on Computer Vision (ICCV) (2019)
Balakrishnan, G., Zhao, A., Dalca, A.V., Durand, F., Guttag, J.V.: Synthesizing images of humans in unseen poses. In: Computer Vision and Pattern Recognition (CVPR) (2018)
Buehler, C., Bosse, M., McMillan, L., Gortler, S.J., Cohen, M.F.: Unstructured lumigraph rendering. In: SIGGRAPH (2001)
Carceroni, R.L., Kutulakos, K.N.: Multi-view scene capture by surfel sampling: from video streams to non-rigid 3d motion, shape and reflectance. Int. J. Comput. Vision (IJCV) 49(2), 175–214 (2002)
Chan, C., Ginosar, S., Zhou, T., Efros, A.A.: Everybody dance now. In: International Conference on Computer Vision (ICCV) (2019)
Chaurasia, G., Duchêne, S., Sorkine-Hornung, O., Drettakis, G.: Depth synthesis and local warps for plausible image-based navigation. ACM Trans. Graphics 32, 1–13 (2013)
Debevec, P., Yu, Y., Borshukov, G.: Efficient view-dependent image-based rendering with projective texture-mapping. In: Eurographics Workshop on Rendering (1998)
Dou, M., et al.: Fusion4d: real-time performance capture of challenging scenes. ACM Trans. Graph. 35(4), 1–13 (2016)
Esser, P., Sutter, E., Ommer, B.: A variational u-net for conditional appearance and shape generation. In: Computer Vision and Pattern Recognition (CVPR), pp. 8857–8866 (2018)
Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: SIGGRAPH, pp. 43–54 (1996)
Grigor’ev, A.K., Sevastopolsky, A., Vakhitov, A., Lempitsky, V.S.: Coordinate-based texture inpainting for pose-guided human image generation. In: Computer Vision and Pattern Recognition (CVPR), pp. 12127–12136 (2019)
Guo, K., Xu, F., Yu, T., Liu, X., Dai, Q., Liu, Y.: Real-time geometry, albedo, and motion reconstruction using a single RGB-D camera. ACM Trans. Graph. 36(4) (2017)
Han, X., Hu, X., Huang, W., Scott, M.R.: Clothflow: a flow-based model for clothed person generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019
Huang, Z.: Deep volumetric video from very sparse multi-view performance capture. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 351–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_21
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Computer Vision and Pattern Regognition (CVPR) (2018)
Kim, H., et al.: Neural style-preserving visual dubbing. ACM Trans. Graphics (TOG) 38(6), 178:1–178:13 (2019)
Kim, H., et al.: Deep videoportraits. ACM Trans. Graphics (TOG) 37 (2018)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)
Lazova, V., Insafutdinov, E., Pons-Moll, G.: 360-degree textures of people in clothing from a single image. In: International Conference on 3D Vision (3DV), pp. 643–653 (2019)
Levoy, M., Hanrahan, P.: Light field rendering. In: SIGGRAPH, p. 31–42 (1996)
Liu, L., et al.: Neural rendering and reenactment of human actor videos. ACM Trans. Graphics (TOG) (2019)
Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: deep hypersphere embedding for face recognition. In: Computer Vision and Pattern Recognition (CVPR), pp. 212–220 (2017)
Liu, W., Piao, Z., Jie, M., Luo, W., Ma, L., Gao, S.: Liquid warping GAN: a unified framework for human motion imitation, appearance transfer and novel view synthesis. In: International Conference on Computer Vision (ICCV) (2019)
Liu, Y., Dai, Q., Xu, W.: A point-cloud-based multiview stereo algorithm for free-viewpoint video. IEEE Trans. Vis. Comput. Graphics (TVCG) 16(3), 407–418 (2010)
Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: Deepfashion: powering robust clothes recognition and retrieval with rich annotations. In: Computer Vision and Pattern Recognition (CVPR), pp. 1096–1104 (2016)
Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: learning dynamic renderable volumes from images. ACM Trans. Graph. (SIGGRAPH) 38(4) (2019)
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 34(6), 248:1–248:16 (2015)
Ma, L., Sun, Q., Georgoulis, S., van Gool, L., Schiele, B., Fritz, M.: Disentangled person image generation. In: Computer Vision and Pattern Recognition (CVPR) (2018)
Martin Brualla, R., et al.: Lookingood: enhancing performance capture with real-time neural re-rendering. ACM Trans. Graphics (TOG) 37 (2018)
Matsuyama, T., Xiaojun Wu, Takai, T., Wada, T.: Real-time dynamic 3-D object shape reconstruction and high-fidelity texture mapping for 3-D video. IEEE Trans. Circuits Syst. Video Technol. 14(3), 357–369 (2004)
Neverova, N., Alp Güler, R., Kokkinos, I.: Dense pose transfer. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 128–143. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_8
Orts-Escolano, S., et al.: Holoportation: virtual 3D teleportation in real-time. In: Annual Symposium on User Interface Software and Technology, pp. 741–754 (2016)
Pandey, R., et al.: Volumetric capture of humans with a single RGBD camera via semi-parametric learning. In: Computer Vision and Pattern Recognition (CVPR) (2019)
Pfister, H., Zwicker, M., van Baar, J., Gross, M.: Surfels: surface elements as rendering primitives. In: SIGGRAPH, pp. 335–342 (2000)
Gueler, R.A., Neverova, N., Kokkinos, I.: Densepose: dense human pose estimation in the wild. In: Computer Vision and Pattern Recognition (CVPR) (2018)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: PIFU: pixel-aligned implicit function for high-resolution clothed human digitization. In: International Conference on Computer Vision (ICCV) (2019)
Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Computer Vision and Pattern Recognition (CVPR), pp. 4104–4113 (2016)
Shade, J., Gortler, S., He, L.W., Szeliski, R.: Layered depth images. In: SIGGRAPH, pp. 231–242 (1998)
Shysheya, A., et al.: Textured neural avatars. In: Computer Vision and Pattern Recognition (CVPR) (2019)
Siarohin, A., Lathuilière, S., Sangineto, E., Sebe, N.: Appearance and pose-conditioned human image generation using deformable GANs. Trans. Pattern Anal. Mach. Intell. (TPAMI) (2019)
Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: Animating arbitrary objects via deep motion transfer. In: Computer Vision and Pattern Recognition (CVPR) (2019)
Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion model for image animation. In: Conference on Neural Information Processing Systems (NeurIPS) (2019)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhöfer, M.: Deepvoxels: Learning persistent 3D feature embeddings. In: Computer Vision and Pattern Recognition (CVPR) (2019)
Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: continuous 3D-structure-aware neural scene representations. In: Advances in Neural Information Processing Systems (NeurIPS) (2019)
Tao, Y., et al.: Doublefusion: real-time capture of human performance with inner body shape from a depth sensor. In: Computer Vision and Pattern Recognition (CVPR) (2018)
Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graphics (TOG) 38 (2019)
Thies, J., Zollhöfer, M., Theobalt, C., Stamminger, M., Nießner, M.: Image-guided neural object rendering. In: International Conference on Learning Representations (ICLR) (2020)
Tung, T., Nobuhara, S., Matsuyama, T.: Complete multi-view reconstruction of dynamic scenes from probabilistic fusion of narrow and wide baseline stereo. In: International Conference on Computer Vision (ICCV). pp. 1709–1716 (2009)
Varol, G., et al.: Learning from synthetic humans. In: Computer Vision and Pattern Recognition (CVPR) (2017)
Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Computer Vision and Pattern Recognition (CVPR) (2018)
Waschbüsch, M., Würmlin, S., Cotting, D., Sadlo, F., Gross, M.: Scalable 3D video of dynamic scenes. Visual Comput. 21(8), 629–638 (2005)
Xu, Z., Bi, S., Sunkavalli, K., Hadap, S., Su, H., Ramamoorthi, R.: Deep view synthesis from sparse photometric images. ACM Trans. Graph. 38(4), 76:1–76:13 (2019)
Yu, T., et al.: Bodyfusion: real-time capture of human motion and surface geometry using a single depth camera. In: International Conference on Computer Vision (ICCV), pp. 910–919 (2017)
Yu, T., et al: Simulcap: single-view human performance capture with cloth simulation. In: Computer Vision and Pattern Recognition (CVPR) (2019)
Zablotskaia, P., Siarohin, A., Sigal, L., Zhao, B.: DwNet: dense warp-based network for pose-guided human video generation. In: British Machine Vision Conference (BMVC) (2019)
Zhang, L., Curless, B., Seitz, S.M.: Spacetime stereo: shape recovery for dynamic scenes. In: Computer Vision and Pattern Recognition (CVPR) (2003)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Computer Vision and Pattern Recognition (CVPR) (2018)
Zhao, B., Wu, X., Cheng, Z.Q., Liu, H., Jie, Z., Feng, J.: Multi-view image generation from a single-view. In: ACM International Conference on Multimedia, pp. 383–391 (2018)
Zhou, Y., Wang, Z., Fang, C., Bui, T., Berg, T.L.: Dance dance generation: motion transfer for internet videos. In: International Conference on Computer Vision Workshops (ICCVW) (2019)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Zhu, H., Su, H., Wang, P., Cao, X., Yang, R.: View extrapolation of human body from a single image. In: Computer Vision and Pattern Recognition (CVPR) (2018)
Zhu, J.Y., et al.: Visual object networks: image generation with disentangled 3D representations. In: Conference on Neural Information Processing Systems (NeurIPS), pp. 118–129 (2018)
Acknowledgements
This work was supported by the ERC Consolidator Grant 4DReply (770784).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Sarkar, K., Mehta, D., Xu, W., Golyanik, V., Theobalt, C. (2020). Neural Re-rendering of Humans from a Single Image. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12356. Springer, Cham. https://doi.org/10.1007/978-3-030-58621-8_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-58621-8_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58620-1
Online ISBN: 978-3-030-58621-8
eBook Packages: Computer ScienceComputer Science (R0)