Skip to main content

Automated Machine Learning: Prospects and Challenges

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

The State of the Art of the young field of Automated Machine Learning (AutoML) is held by the connectionist approach. Several techniques of such an inspiration have recently shown promising results in automatically designing neural network architectures. However, apart from back-propagation, only a few applications of other learning techniques are used for these purposes. The back-propagation process takes advantage of specific optimization techniques that are best suited to specific application domains (e.g., Computer Vision and Natural Language Processing). Hence, the need for a more general learning approach, namely, a basic algorithm able to make inference in different contexts with distinct properties. In this paper, we deal with the problem from a scientific and epistemological point of view. We believe that this is needed to fully understand the mechanisms and dynamics underlying human learning. To this aim, we define some elementary inference operations and show how modern architectures can be built by a combination of those elementary methods. We analyze each method in different settings and find the best-suited application context for each learning algorithm. Furthermore, we discuss experimental findings and compare them with human learning. The discrepancy is particularly evident between supervised and unsupervised learning. Then, we determine which elementary learning rules are best suited for unsupervised systems, and, finally, we propose some improvements in reinforcement learning architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.primaryobjects.com/2013/01/27/using-artificial-intelligence-to-write-self-modifying-improving-programs/ (Accessed: June 23, 2020).

  2. 2.

    research.fb.com/downloads/babi/ (Accessed: June 23, 2020).

  3. 3.

    github.com/lorenzoviva/tesi/tree/master/recurrent/ (Accessed: June 23, 2020).

  4. 4.

    gym.openai.com/ (Accessed: June 23, 2020).

  5. 5.

    http://www.github.com/lorenzoviva/tesi/tree/master/RL_routing/ (Accessed: June 23, 2020).

  6. 6.

    drive.google.com/drive/folders/1n74hoJ1K0hg0SQc18y7PCH1h9w6dqFJP?usp= sharing (Accessed: June 23, 2020).

References

  1. Biancalana, C., Gasparetti, F., Micarelli, A., Miola, A., Sansonetti, G.: Context-aware movie recommendation based on signal processing and machine learning. In: Proceedings of the 2nd Challenge on Context-Aware Movie Recommendation, CAMRa 2011, pp. 5–10. ACM, New York (2011)

    Google Scholar 

  2. Biancalana, C., Gasparetti, F., Micarelli, A., Sansonetti, G.: An approach to social recommendation for context-aware mobile services. ACM Trans. Intell. Syst. Technol. 4(1), 10:1–10:31 (2013)

    Article  Google Scholar 

  3. Bologna, C., De Rosa, A.C., De Vivo, A., Gaeta, M., Sansonetti, G., Viserta, V.: Personality-based recommendation in e-commerce. In: CEUR Workshop Proceedings, vol. 997. CEUR-WS.org, Aachen (2013)

    Google Scholar 

  4. Caldarelli, S., Gurini, D.F., Micarelli, A., Sansonetti, G.: A signal-based approach to news recommendation. In: CEUR Workshop Proceedings, vol. 1618. CEUR-WS.org, Aachen (2016)

    Google Scholar 

  5. Choi, J., Seo, H., Im, S., Kang, M.: Attention routing between capsules. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 1981–1989 (2019)

    Google Scholar 

  6. Church, A.: An unsolvable problem of elementary number theory. Am. J. Math. 58(2), 345–363 (1936)

    Article  MathSciNet  Google Scholar 

  7. D’Aniello, G., Gaeta, M., Orciuoli, F., Sansonetti, G., Sorgente, F.: Knowledge-based smart city service system. Electronics (Switzerland) 9(6), 1–22 (2020)

    Google Scholar 

  8. Domingos, P.: The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World. Basic Books, New York (2015)

    Google Scholar 

  9. Elsken, T., Metzen, J., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20, 1–21 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Feltoni Gurini, D., Gasparetti, F., Micarelli, A., Sansonetti, G.: Temporal people-to-people recommendation on social networks with sentiment-based matrix factorization. Future Gener. Comput. Syst. 78, 430–439 (2018)

    Article  Google Scholar 

  11. Fogli, A., Sansonetti, G.: Exploiting semantics for context-aware itinerary recommendation. Pers. Ubiquit. Comput. 23(2), 215–231 (2019). https://doi.org/10.1007/s00779-018-01189-7

    Article  Google Scholar 

  12. Goodfellow, I., et al..: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  13. Graves, A., et al.: Hybrid computing using a neural network with dynamic external memory. Nature 538(7626), 471–476 (2016)

    Article  Google Scholar 

  14. Hahn, T., Pyeon, M., Kim, G.: Self-routing capsule networks. In: Advances in Neural Information Processing Systems, pp. 7656–7665 (2019)

    Google Scholar 

  15. Hassan, H.A.M., Sansonetti, G., Gasparetti, F., Micarelli, A.: Semantic-based tag recommendation in scientific bookmarking systems. In: Proceedings of ACM RecSys 2018, pp. 465–469. ACM, New York (2018)

    Google Scholar 

  16. Hassan, H.A.M., Sansonetti, G., Gasparetti, F., Micarelli, A., Beel, J.: BERT, ELMo, USE and infersent sentence encoders: the panacea for research-paper recommendation? In: Tkalcic, M., Pera, S. (eds.) Proceedings of ACM RecSys 2019 Late-Breaking Results, vol. 2431, pp. 6–10 (2019). CEUR-WS.org

  17. Heekeren, H.R., Marrett, S., Ungerleider, L.G.: The neural systems that mediate human perceptual decision making. Nat. Rev. Neurosci. 9(6), 467–479 (2008)

    Article  Google Scholar 

  18. Hilbert, D.: Die grundlagen der mathematik. In: Die Grundlagen der Mathematik, pp. 1–21. Springer, Wiesbaden (1928). https://doi.org/10.1007/978-3-663-16102-8

  19. Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming auto-encoders. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 44–51. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_6

    Chapter  Google Scholar 

  20. Hinton, G.E., Sabour, S., Frosst, N.: Matrix capsules with EM routing. In: International Conference on Learning Representations (2018)

    Google Scholar 

  21. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  22. Jin, H., Song, Q., Hu, X.: Auto-Keras: an efficient neural architecture search system. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1946–1956 (2019)

    Google Scholar 

  23. Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., Xing, E.P.: Neural architecture search with Bayesian optimisation and optimal transport. In: Advances in Neural Information Processing System, vol. 31, pp. 2016–2025. Curran Associates, Inc. (2018)

    Google Scholar 

  24. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical representations for efficient architecture search. In: Proceedings of the 6th International Conference on Learning Representations (ICLR), Vancouver, BC, Canada (2018)

    Google Scholar 

  25. McGill, M., Perona, P.: Deciding how to decide: dynamic routing in artificial neural networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2363–2372 (2017). JMLR.org

  26. Onori, M., Micarelli, A., Sansonetti, G.: A comparative analysis of personality-based music recommender systems. In: CEUR Workshop Proceedings, vol. 1680, pp. 55–59. CEUR-WS.org, Aachen (2016)

    Google Scholar 

  27. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI), 27 January–1 February 2019, Honolulu, Hawaii, USA, pp. 4780–4789 (2019)

    Google Scholar 

  28. Sansonetti, G.: Point of interest recommendation based on social and linked open data. Pers. Ubiquit. Comput. 23(2), 199–214 (2019). https://doi.org/10.1007/s00779-019-01218-z

    Article  Google Scholar 

  29. Sansonetti, G., Gasparetti, F., Micarelli, A., Cena, F., Gena, C.: Enhancing cultural recommendations through social and linked open data. User Model. User Adap. Inter. 29(1), 121–159 (2019). https://doi.org/10.1007/s11257-019-09225-8

    Article  Google Scholar 

  30. Schmidhuber, J.: Optimal ordered problem solver. Mach. Learn. 54(3), 211–254 (2004)

    Article  Google Scholar 

  31. Trask, A., Hill, F., Reed, S., Rae, J., Dyer, C., Blunsom, P.: Neural arithmetic logic units. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS 2018. Curran Associates Inc., New York (2018)

    Google Scholar 

  32. Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. Proc. Lond. Math.Soc. 2(1), 230–265 (1937)

    Article  MathSciNet  Google Scholar 

  33. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv:abs/1611.01578 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Sansonetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vaccaro, L., Sansonetti, G., Micarelli, A. (2020). Automated Machine Learning: Prospects and Challenges. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12252. Springer, Cham. https://doi.org/10.1007/978-3-030-58811-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58811-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58810-6

  • Online ISBN: 978-3-030-58811-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy