Abstract
Metaheuristics for solving multiobjective problems can provide an approximation of the Pareto front in a short time, but can also have difficulties finding feasible solutions in constrained problems. Integer linear programming solvers, on the other hand, are good at finding feasible solutions, but they can require some time to find and guarantee the efficient solutions of the problem. In this work we combine these two ideas to propose a hybrid algorithm mixing an exploration heuristic for multiobjective optimization with integer linear programming to solve multiobjective problems with binary variables and linear constraints. The algorithm has been designed to provide an approximation of the Pareto front that is well-spread throughout the objective space. In order to check the performance, we compare it with three popular metaheuristics using two benchmarks of multiobjective binary constrained problems. The results show that the proposed approach provides better performance than the baseline algorithms in terms of number of the solutions, hypervolume, generational distance, inverted generational distance, and the additive epsilon indicator.
This research is partially funded by the Spanish Ministry of Economy and Competitiveness and FEDER under contract TIN2017-88213-R (6city); Universidad de Málaga, Consejería de Economía y Conocimiento de la Junta de Andaluía and FEDER under grant number UMA18-FEDERJA-003 (PRECOG); Spanish Ministry of Science, Innovation and Universities and FEDER under contracts RTC-2017-6714-5 (Eco-IoT) and RED2018-102472-T (SEBASENet 2.0); and TAILOR ICT-48 Network (No 952215) funded by EU Horizon 2020 research and innovation programme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Outputs for the ILP solver CPLEX 12.6.2.
- 2.
Available in http://home.ku.edu.tr/~moolibrary/.
- 3.
- 4.
- 5.
References
Asafuddoula, M., Ray, T., Sarker, R., Alam, K.: An adaptive constraint handling approach embedded MOEA/D. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)
Ball, M.O.: Heuristics based on mathematical programming. Surv. Oper. Res. Manage. Sci. 16(1), 21–38 (2011)
Blum, C., Pereira, J.: Extension of the CMSA algorithm: an LP-based way for reducing sub-instances. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 285–292 (2016)
Blum, C., Pinacho, P., López-Ibáñez, M., Lozano, J.A.: Construct, merge, solve and adapt a new general algorithm for combinatorial optimization. Comput. Oper. Res. 68, 75–88 (2016)
Boschetti, M.A., Maniezzo, V., Roffilli, M., Bolufé Röhler, A.: Matheuristics: optimization, simulation and control. In: Blesa, M.J., Blum, C., Di Gaspero, L., Roli, A., Sampels, M., Schaerf, A. (eds.) HM 2009. LNCS, vol. 5818, pp. 171–177. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04918-7_13
Chalmet, L., Lemonidis, L., Elzinga, D.: An algorithm for the bi-criterion integer programming problem. Eur. J. Oper. Res. 25(2), 292–300 (1986). https://doi.org/10.1016/0377-2217(86)90093-7
Chicano, F., Whitley, D., Tinos, R.: Efficient hill climber for constrained pseudo-boolean optimization problems. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 309–316 (2016)
Dächert, K., Klamroth, K.: A linear bound on the number of scalarizations needed to solve discrete tricriteria optimization problems. J. Global Optim. 61(4), 643–676 (2014). https://doi.org/10.1007/s10898-014-0205-z
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_83
Durillo, J.J., Nebro, A.J.: jMetal: a java framework for multi-objective optimization. Adv. Eng. Softw. 42(10), 760–771 (2011)
Ehrgott, M., Tenfelde-Podehl, D.: Computation of ideal and nadir values and implications for their use in MCDM methods. Eur. J. Oper. Res. 151(1), 119–139 (2003). https://doi.org/10.1016/S0377-2217(02)00595-7
Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: Proceedings of the IEEE Congress on Evolutionary Computation, 2006. CEC 2006, pp. 1157–1163. IEEE (2006). https://doi.org/10.1109/CEC.2006.1688440
Jiang, S., Ong, Y.S., Zhang, J., Feng, L.: Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans. Cybern. 44(12), 2391–2404 (2014). https://doi.org/10.1109/TCYB.2014.2307319
Kirlik, G., Sayın, S.: A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems. Eur. J. Oper. Res. 232(3), 479–488 (2014). https://doi.org/10.1016/j.ejor.2013.08.001
Klamroth, K., Lacour, R., Vanderpooten, D.: On the representation of the search region in multi-objective optimization. Eur. J. Oper. Res. 245(3), 767–778 (2015). https://doi.org/10.1016/j.ejor.2015.03.031
Li, M., Yao, X.: Quality evaluation of solution sets in multiobjective optimisation: a survey. ACM Comput. Surv. 52(2), 1–38 (2019)
Liefooghe, A., Derbel, B.: A correlation analysis of set quality indicator values in multiobjective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 581–588 (2016)
Liu, Q., Li, X., Liu, H., Guo, Z.: Multi-objective metaheuristics for discrete optimization problems: a review of the state-of-the-art. Appl. Soft Comput. 93, 106382 (2020). https://doi.org/10.1016/j.asoc.2020.106382
López-Ibáñez, M., Stützle, T.: Automatically improving the anytime behaviour of optimisation algorithms. Eur. J. Oper. Res. 235(3), 569–582 (2014). https://doi.org/10.1016/j.ejor.2013.10.043
López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)
Mezura-Montes, E., Coello Coello, C.A.: Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm Evol. Comput. 1(4), 173–194 (2011). https://doi.org/10.1016/j.swevo.2011.10.001
While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes. IEEE Trans. Evol. Comput. 16(1), 86–95 (2012). https://doi.org/10.1109/TEVC.2010.2077298
Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)
Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on the design of pareto-compliant indicators via weighted integration. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 862–876. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_64
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. TIK-report 103 (2001). https://doi.org/10.3929/ethz-a-004284029
Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms-a comparative case study. In: International Conference on Parallel Problem Solving from Nature, pp. 292–301. Springer (1998). https://doi.org/10.1007/BFb0056872
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003). https://doi.org/10.1109/TEVC.2003.810758
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Domínguez-Ríos, M.Á., Chicano, F., Alba, E. (2021). Improving Search Efficiency and Diversity of Solutions in Multiobjective Binary Optimization by Using Metaheuristics Plus Integer Linear Programming. In: Castillo, P.A., Jiménez Laredo, J.L. (eds) Applications of Evolutionary Computation. EvoApplications 2021. Lecture Notes in Computer Science(), vol 12694. Springer, Cham. https://doi.org/10.1007/978-3-030-72699-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-72699-7_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72698-0
Online ISBN: 978-3-030-72699-7
eBook Packages: Computer ScienceComputer Science (R0)