Skip to main content

Metabolomics Data Treatment: Basic Directions of the Full Process

  • Chapter
  • First Online:
Separation Techniques Applied to Omics Sciences

Abstract

The present chapter describes basic aspects of the main steps for data processing on mass spectrometry-based metabolomics platforms, focusing on the main objectives and important considerations of each step. Initially, an overview of metabolomics and the pivotal techniques applied in the field are presented. Important features of data acquisition and preprocessing such as data compression, noise filtering, and baseline correction are revised focusing on practical aspects. Peak detection, deconvolution, and alignment as well as missing values are also discussed. Special attention is given to chemical and mathematical normalization approaches and the role of the quality control (QC) samples. Methods for uni- and multivariate statistical analysis and data pretreatment that could impact them are reviewed, emphasizing the most widely used multivariate methods, i.e., principal components analysis (PCA), partial least squares-discriminant analysis (PLS-DA), orthogonal partial least square-discriminant analysis (OPLS-DA), and hierarchical cluster analysis (HCA). Criteria for model validation and softwares used in data processing were also approached. The chapter ends with some concerns about the minimal requirements to report metadata in metabolomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ANN:

Artificial Neural Network

CE-MS:

Capillary Electrophoresis-Mass Spectrometry

COW:

Correlation-Optimized Warping

CV:

Coefficient of Variation

DI FT-ICR MS:

Direct-Infusion Fourier-Transform Ion-Cyclotron-Resonance Mass Spectrometry

DTW:

Dynamic Time Warping

GA:

Genetic Algorithm

GC-MS:

Gas Chromatography-Mass Spectrometry

HCA:

Hierarchical Cluster Analysis

HILIC:

Hydrophilic Interaction Chromatography

IC:

Intensity Count

kNN:

k-Nearest Neighbors

LC-MS:

Liquid Chromatography-Mass Spectrometry

LDA:

Linear Discriminant Analysis

LOESS:

Lowest Point of Smoothed Spectrum

MS:

Mass Spectrometry

NMR:

Nuclear Magnetic Resonance

NOMIS:

Normalization Using the Optimal Selection of Multiple Internal Standards

OPLS-DA:

Orthogonal Partial Least-Square Discriminant Analysis

PARAFAC:

Parallel Factor Analysis

PC:

Principal Component

PCA:

Principal Components Analysis

PLS-DA:

Partial Least Squares-Discriminant Analysis

PQN:

Probabilistic Quotient Normalization

PTW:

Parametric Time Warping

QCs:

Quality Control Samples

RAFFT:

Rapid Fast Fourier Transform

RF:

Random Forest

ROC:

Receiver Operating Characteristic Curve

ROI:

Region of Interest

S/N:

Signal-Noise Ratio

SIMCA:

Soft Independent Modeling of Class Analogy

SOM:

Self-Organization Map

SVM:

Support Vector Machine

TOF-MS:

Time of Flight-Mass Spectrometry

XIC:

Extracted Ion Chromatogram

References

  1. Boccard J, Rudaz S (2019) Analysis of metabolomics data—a chemometrics perspective. In: Reference module in chemistry, molecular sciences and chemical engineering. Elsevier, Amsterdam, Netherlands, pp 1–23

    Google Scholar 

  2. Hendriks MMWB, van Eeuwijk FA, Jellema RH et al (2011) Data-processing strategies for metabolomics studies. TrAC – Trends Anal Chem 30:1685–1698. https://doi.org/10.1016/j.trac.2011.04.019

    Article  CAS  Google Scholar 

  3. Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics – a review in human disease diagnosis. Anal Chim Acta 659:23–33. https://doi.org/10.1016/j.aca.2009.11.042

    Article  CAS  PubMed  Google Scholar 

  4. Shree M, Lingwan M, Masakapalli SK (2019) Metabolite profiling and metabolomics of plant systems using 1H NMR and GC-MS. In: Banerjee R, Kumar GV, Kumar SPJ (eds) OMICS-based approaches in plant biotechnology. John Wiley & Sons, Inc., Hoboken, pp 129–144

    Chapter  Google Scholar 

  5. Duan L-X, Qi X (2015) Metabolite qualitative methods and the introduction of metabolomics database. In: Qi X, Chen X, Wang Y (eds) Plant metabolomics. Springer Netherlands, Dordrecht, pp 171–193

    Chapter  Google Scholar 

  6. Tang J (2011) Microbial Metabolomics. Curr Genomics 12:391–403. https://doi.org/10.2174/138920211797248619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Belinato J, Bazioli J, Sussulini A et al (2019) Metabolômica microbiana: inovações e aplicações. Quim Nova 42:546–559. https://doi.org/10.21577/0100-4042.20170324

    CAS  Google Scholar 

  8. Dixon RA, Gang DR, Charlton AJ et al (2006) Applications of metabolomics in agriculture. J Agric Food Chem 54:8984–8994. https://doi.org/10.1021/jf061218t

    Article  CAS  PubMed  Google Scholar 

  9. Emwas A-H, Roy R, McKay RT et al (2019) NMR spectroscopy for metabolomics research. Meta 9:123. https://doi.org/10.3390/metabo9070123

    CAS  Google Scholar 

  10. Wishart DS (2019) NMR metabolomics: a look ahead. J Magn Reson 306:155–161. https://doi.org/10.1016/j.jmr.2019.07.013

    Article  CAS  PubMed  Google Scholar 

  11. Theodoridis GA, Gika HG, Want EJ, Wilson ID (2012) Liquid chromatography-mass spectrometry based global metabolite profiling: a review. Anal Chim Acta 711:7–16. https://doi.org/10.1016/j.aca.2011.09.042

    Article  CAS  PubMed  Google Scholar 

  12. Ramautar R, Somsen GW, de Jong GJ (2019) CE-MS for metabolomics: developments and applications in the period 2016–2018. Electrophoresis 40:165–179. https://doi.org/10.1002/elps.201800323

    Article  CAS  PubMed  Google Scholar 

  13. Buzatto AZ, de Sousa AC, Guedes SF et al (2014) Metabolomic investigation of human diseases biomarkers by CE and LC coupled to MS. Electrophoresis 35:1285–1307. https://doi.org/10.1002/elps.201300470

    Article  CAS  PubMed  Google Scholar 

  14. Tang H-Y, Chiu DT, Lin J-F et al (2017) Disturbance of plasma lipid metabolic profile in Guillain-Barre syndrome. Sci Rep 7:8140. https://doi.org/10.1038/s41598-017-08338-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Marshall DD, Powers R (2017) Beyond the paradigm: combining mass spectrometry and nuclear magnetic resonance for metabolomics. Prog Nucl Magn Reson Spectrosc 100:1–16. https://doi.org/10.1016/j.pnmrs.2017.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Canuto G, Costa JL, Cruz P et al (2017) Metabolômica: definições, estado-da-arte e aplicações representativas. Quim Nova 41:75–91. https://doi.org/10.21577/0100-4042.20170134

    Google Scholar 

  17. Tang D-Q, Zou L, Yin X-X, Ong CN (2016) HILIC-MS for metabolomics: an attractive and complementary approach to RPLC-MS. Mass Spectrom Rev 35:574–600. https://doi.org/10.1002/mas.21445

    Article  CAS  PubMed  Google Scholar 

  18. Karaman I (2017) Preprocessing and pretreatment of metabolomics data for statistical analysis. In: Sussulini A (ed) Metabolomics: from fundamentals to clinical applications. Springer International Publishing, Cham, pp 145–161

    Chapter  Google Scholar 

  19. Katajamaa M, Orešič M (2007) Data processing for mass spectrometry-based metabolomics. J Chromatogr A 1158:318–328. https://doi.org/10.1016/j.chroma.2007.04.021

    Article  CAS  PubMed  Google Scholar 

  20. Euceda LR, Giskeodegård GF, Bathen TF (2015) Preprocessing of NMR metabolomics data. Scand J Clin Lab Invest 75:193–203. https://doi.org/10.3109/00365513.2014.1003593

    Article  CAS  PubMed  Google Scholar 

  21. Veltri P (2008) Algorithms and tools for analysis and management of mass spectrometry data. Brief Bioinform 9:144–155. https://doi.org/10.1093/bib/bbn007

    Article  CAS  PubMed  Google Scholar 

  22. Stolt R, Torgrip RJO, Lindberg J et al (2006) Second-order peak detection for multicomponent high-resolution LC/MS data. Anal Chem 78:975–983. https://doi.org/10.1021/ac050980b

    Article  CAS  PubMed  Google Scholar 

  23. Gorrochategui E, Jaumot J, Lacorte S, Tauler R (2016) Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: overview and workflow. TrAC – Trends Anal Chem 82:425–442. https://doi.org/10.1016/j.trac.2016.07.004

    Article  CAS  Google Scholar 

  24. Chambers MC, Maclean B, Burke R et al (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yi L, Dong N, Yun Y et al (2016) Chemometric methods in data processing of mass spectrometry-based metabolomics: a review. Anal Chim Acta 914:17–34. https://doi.org/10.1016/j.aca.2016.02.001

    Article  CAS  PubMed  Google Scholar 

  26. Tian H, Li B, Shui G (2017) Untargeted LC–MS data preprocessing in metabolomics. J Anal Test 1:187–192. https://doi.org/10.1007/s41664-017-0030-8

    Article  Google Scholar 

  27. Rowlands C, Elliott S (2011) Automated algorithm for baseline subtraction in spectra. J Raman Spectrosc 42:363–369. https://doi.org/10.1002/jrs.2691

    Article  CAS  Google Scholar 

  28. Eliasson M, Rannar S, Trygg J (2011) From data processing to multivariate validation - essential steps in extracting interpretable information from metabolomics data. Curr Pharm Biotechnol 12:996–1004. https://doi.org/10.2174/138920111795909041

    Article  CAS  PubMed  Google Scholar 

  29. Hermansson M, Uphoff A, Käkelä R, Somerharju P (2005) Automated quantitative analysis of complex lipidomes by liquid chromatography/mass spectrometry. Anal Chem 77:2166–2175. https://doi.org/10.1021/ac048489s

    Article  CAS  PubMed  Google Scholar 

  30. Tsugawa H, Cajka T, Kind T et al (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12:523–526. https://doi.org/10.1038/nmeth.3393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Março PH, Valderrama P, Alexandrino GL et al (2014) Multivariate curve resolution with alternating least squares: description, operation and aplications. Quim Nova 37:1525–1532. https://doi.org/10.5935/0100-4042.20140205

    Google Scholar 

  32. Chen T, Dai R (2015) Metabolomic data processing based on mass spectrometry platforms. In: Qi X, Chen X, Wang Y (eds) Plant metabolomics. Springer Netherlands, Dordrecht, pp 123–169

    Chapter  Google Scholar 

  33. van Nederkassel AM, Daszykowski M, Eilers PHC, Vander HY (2006) A comparison of three algorithms for chromatograms alignment. J Chromatogr A 1118:199–210. https://doi.org/10.1016/j.chroma.2006.03.114

    Article  PubMed  CAS  Google Scholar 

  34. Mogollón NGS, de Lima PF, Gama MR et al (2014) State of the art two-dimensional liquid chromatography: fundamental concepts, instrumentation, and applications. Quim Nova 37:1680–1691. https://doi.org/10.5935/0100-4042.20140261

    Google Scholar 

  35. Zhang D, Huang X, Regnier FE, Zhang M (2008) Two-dimensional correlation optimized warping algorithm for aligning GCxGC-MS data. Anal Chem 80:2664–2671. https://doi.org/10.1021/ac7024317

    Article  CAS  PubMed  Google Scholar 

  36. Reinhold D, Pielke-Lombardo H, Jacobson S et al (2019) Pre-analytic considerations for mass spectrometry-based untargeted metabolomics data. In: D’Alessandro A (ed) High-throughput metabolomics: methods and protocols. Humana Press, New York, pp 323–340

    Chapter  Google Scholar 

  37. Wei R, Wang J, Su M et al (2018) Missing value imputation approach for mass spectrometry-based metabolomics data. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-017-19120-0

    Google Scholar 

  38. Hrydziuszko O, Viant MR (2012) Missing values in mass spectrometry based metabolomics: an undervalued step in the data processing pipeline. Metabolomics 8:161–174. https://doi.org/10.1007/s11306-011-0366-4

    Article  CAS  Google Scholar 

  39. Sysi-Aho M, Katajamaa M, Yetukuri L, Orešič M (2007) Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinformatics 8:93. https://doi.org/10.1186/1471-2105-8-93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Cook T, Ma Y, Gamagedara S (2020) Evaluation of statistical techniques to normalize mass spectrometry-based urinary metabolomics data. J Pharm Biomed Anal 177:112854. https://doi.org/10.1016/j.jpba.2019.112854

    Article  CAS  PubMed  Google Scholar 

  41. Wu Y, Li L (2016) Sample normalization methods in quantitative metabolomics. J Chromatogr A 1430:80–95. https://doi.org/10.1016/j.chroma.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  42. Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1 H NMR Metabonomics. Anal Chem 78:4281–4290. https://doi.org/10.1021/ac051632c

    Article  CAS  PubMed  Google Scholar 

  43. Lee J, Park J, Lim MS et al (2012) Quantile normalization approach for liquid chromatography- mass spectrometry-based metabolomic data from healthy human volunteers. Anal Sci 28:801–805. https://doi.org/10.2116/analsci.28.801

    Article  CAS  PubMed  Google Scholar 

  44. Ferreira MMC (2015) Quimiometria: conceitos, métodos e aplicações. Editora da Unicamp, Campinas

    Book  Google Scholar 

  45. van den Berg RA, Hoefsloot HCJ, Westerhuis JA et al (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:1–15. https://doi.org/10.1186/1471-2164-7-142

    CAS  Google Scholar 

  46. Gougeon L, da Costa G, Guyon F, Richard T (2019) 1H NMR metabolomics applied to Bordeaux red wines. Food Chem 301:125257. https://doi.org/10.1016/j.foodchem.2019.125257

    Article  CAS  PubMed  Google Scholar 

  47. Kumar N, Bansal A, Sarma GS, Rawal RK (2014) Chemometrics tools used in analytical chemistry: an overview. Talanta 123:186–199. https://doi.org/10.1016/j.talanta.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  48. Boccard J, Rudaz S (2014) Harnessing the complexity of metabolomic data with chemometrics. J Chemom 28:1–9. https://doi.org/10.1002/cem.2567

    Article  CAS  Google Scholar 

  49. Brereton RG (2013) Chemometrics and statistics: multivariate classification techniques. Elsevier Inc., Oxford, UK

    Google Scholar 

  50. Bylesjö M (2015) Extracting meaningful information from Metabonomic data using multivariate statistics. In: Bjerrum JT (ed) Metabonomics: methods and protocols. Humana Press, New York, pp 137–146

    Chapter  Google Scholar 

  51. Worley B, Powers R (2012) Multivariate analysis in metabolomics. Curr Metabol 1:92–107. https://doi.org/10.2174/2213235x130108

    Google Scholar 

  52. Pinto RC (2017) Chemometrics methods and strategies in metabolomics. In: Sussulini A (ed) Metabolomics: from fundamentals to clinical applications. Springer International Publishing, Cham, pp 163–190

    Chapter  Google Scholar 

  53. Liu R, Zhang G, Sun M et al (2019) Integrating a generalized data analysis workflow with the single-probe mass spectrometry experiment for single cell metabolomics. Anal Chim Acta 1064:71–79. https://doi.org/10.1016/j.aca.2019.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ebbels TMD, Karaman I, Graça G (2019) Processing and analysis of untargeted multicohort NMR data. In: Gowda GAN, Raftery D (eds) NMR-based metabolomics: methods and protocols. Humana Press, New York, pp 453–470

    Chapter  Google Scholar 

  55. Surowiec I, Johansson E, Stenlund H et al (2018) Quantification of run order effect on chromatography - mass spectrometry profiling data. J Chromatogr A 1568:229–234. https://doi.org/10.1016/j.chroma.2018.07.019

    Article  CAS  PubMed  Google Scholar 

  56. Peña-Bautista C, Roca M, Hervás D et al (2019) Plasma metabolomics in early Alzheimer’s disease patients diagnosed with amyloid biomarker. J Proteome 200:144–152. https://doi.org/10.1016/j.jprot.2019.04.008

    Article  CAS  Google Scholar 

  57. Kantz ED, Tiwari S, Watrous JD et al (2019) Deep neural networks for classification of LC-MS spectral peaks. Anal Chem 91:12407–12413. https://doi.org/10.1021/acs.analchem.9b02983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874. https://doi.org/10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

  59. Want E, Masson P (2011) Processing and analysis of GC/LC-MS-based metabolomics data. In: Metz TO (ed) Metabolic profiling. Humana Press, New York, pp 277–298

    Chapter  Google Scholar 

  60. Truntzer C, Ducoroy P (2017) Statistical approach for biomarker discovery using label-free LC-MS data: an overview. In: Datta S, Mertens BJA (eds) Statistical analysis of proteomics, metabolomics, and Lipidomics data using mass spectrometry. Springer International Publishing, Cham, pp 177–201

    Chapter  Google Scholar 

  61. Blaženović I, Kind T, Ji J, Fiehn O (2018) Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Meta 8:31. https://doi.org/10.3390/metabo8020031

    Google Scholar 

  62. Baran R, Kochi H, Saito N et al (2006) MathDAMP: a package for differential analysis of metabolite profiles. BMC Bioinformatics 7:1–9. https://doi.org/10.1186/1471-2105-7-530

    Article  CAS  Google Scholar 

  63. Agrawal S, Kumar S, Sehgal R et al (2019) El-MAVEN: a fast, robust, and user-friendly mass spectrometry data processing engine for metabolomics. In: D’Alessandro A (ed) High-throughput metabolomics: methods and protocols. Humana Press, New York, pp 301–321

    Chapter  Google Scholar 

  64. Xia J, Psychogios N, Young N, Wishart DS (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37:W652–W660. https://doi.org/10.1093/nar/gkp356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hao L, Zhu Y, Wei P et al (2019) Metandem: an online software tool for mass spectrometry-based isobaric labeling metabolomics. Anal Chim Acta 1088:99–106. https://doi.org/10.1016/j.aca.2019.08.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang W, Chang J, Lei Z et al (2014) MET-COFEA: a liquid chromatography/mass spectrometry data processing platform for metabolite compound feature extraction and annotation. Anal Chem 86:6245–6253. https://doi.org/10.1021/ac501162k

    Article  CAS  PubMed  Google Scholar 

  67. Broeckling CD, Reddy IR, Duran AL et al (2006) MET-IDEA: data extraction tool for mass spectrometry-based metabolomics. Anal Chem 78:4334–4341. https://doi.org/10.1021/ac0521596

    Article  CAS  PubMed  Google Scholar 

  68. Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11. https://doi.org/10.1186/1471-2105-11-395

  69. González-Ruiz V, Gagnebin Y, Drouin N et al (2018) ROMANCE: a new software tool to improve data robustness and feature identification in CE-MS metabolomics. Electrophoresis 39:1222–1232. https://doi.org/10.1002/elps.201700427

    Article  PubMed  CAS  Google Scholar 

  70. Liang YJ, Lin YT, Chen CW et al (2016) SMART: statistical metabolomics analysis – an R tool. Anal Chem 88:6334–6341. https://doi.org/10.1021/acs.analchem.6b00603

    Article  CAS  PubMed  Google Scholar 

  71. Luedemann A, von Malotky L, Erban A, Kopka J (2011) TagFinder: preprocessing software for the fingerprinting and the profiling of gas chromatography–mass spectrometry based metabolome analyses. In: Hardy NW, Hall RD (eds) Plant metabolomics: methods and protocols. Humana Press, New York, pp 255–286

    Chapter  Google Scholar 

  72. Smith CA, Want EJ, O’Maille G et al (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787. https://doi.org/10.1021/ac051437y

    Article  CAS  PubMed  Google Scholar 

  73. Mahieu NG, Genenbacher JL, Patti GJ (2016) A roadmap for the XCMS family of software solutions in metabolomics. Curr Opin Chem Biol 30:87–93. https://doi.org/10.1016/j.cbpa.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  74. Sumner LW, Amberg A, Barrett D et al (2007) Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3:211–221. https://doi.org/10.1007/s11306-007-0082-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Spicer RA, Salek R, Steinbeck C (2017) Comment: a decade after the metabolomics standards initiative it’s time for a revision. Sci Data 4:2–4. https://doi.org/10.1038/sdata.2017.138

    Article  Google Scholar 

  76. Spicer RA, Salek R, Steinbeck C (2017) Compliance with minimum information guidelines in public metabolomics repositories. Sci Data 4:1–8. https://doi.org/10.1038/sdata.2017.137

    Article  Google Scholar 

  77. Duarte GHB (2016) Metabolomics by LC-ESI-QTOF-MS in NOD/SCID mice under chemoterapy treatment: potential biomarkers of leukemia. Master’s thesis. Universidade Estadual de Campinas

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Valéria Colnaghi Simionato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zamora Obando, H.R., Duarte, G.H.B., Simionato, A.V.C. (2021). Metabolomics Data Treatment: Basic Directions of the Full Process. In: Colnaghi Simionato, A.V. (eds) Separation Techniques Applied to Omics Sciences. Advances in Experimental Medicine and Biology(), vol 1336. Springer, Cham. https://doi.org/10.1007/978-3-030-77252-9_12

Download citation

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy