Skip to main content

Weightless Neural Models: An Overview

  • Chapter
  • First Online:
Women in Computational Intelligence

Part of the book series: Women in Engineering and Science ((WES))

Abstract

This paper presents an overview of research in Weightless Neural Models. Weightless Neural Networks (WNNs) do not have weighted connections between nodes. They use a different kind of neuron, usually based on RAM memory devices. The weightless (or RAM-based) neural networks are based on variations of the RAM node proposed by Aleksander. Recent works in the literature, such as the quantum weightless neuron, provide a novel perspective to this area. The paper describes classical and quantum weightless models and important recent works found in the literature, pointing out the challenges and future directions in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Aleksander, Emergent intelligent properties of progressively structured pattern recognition nets. Pattern Recogn. Lett. 1, 375–384 (1983)

    Article  Google Scholar 

  2. I. Aleksander, H. Morton, An Introduction to Neural Computing, 2nd edn. (Chapman and Hall, London, UK, 1995)

    Google Scholar 

  3. I. Aleksander, H. Morton, Aristotle’s Laptop - The Discovery of our Informational Mind, vol. 1 of Series on Machine Consciousness (World Scientific, 2012)

    Google Scholar 

  4. I. Aleksander, H. Morton, Learning state prediction using a weightless neural explorer, in 22th European Symposium on Artificial Neural Networks, ESANN 2014, pp. 505–510 (2014)

    Google Scholar 

  5. I. Aleksander, M.V. Thomas, P.A. Bowden, WiSARD: a radical step forward in image recognition. Sensor Review 4(3), 120–124 (1984)

    Article  Google Scholar 

  6. I. Aleksander, M. de Gregorio, F.M.G. França, P.M.V. Lima, H. Morton, A brief introduction to weightless neural systems, in ESANN 2009, 17th European Symposium on Artificial Neural Networks, pp. 299–305 (2009)

    Google Scholar 

  7. J. Austin, RAM-based neural networks: A short history, in RAM-Based Neural Networks, ed. by J. Austin (World Scientific, UK, 1998), pp. 3–17

    Chapter  Google Scholar 

  8. D.O. Cardoso, J. Gama, F.M.G. França, Weightless neural networks for open set recognition. Machine Learning 106(9-10), 1547–1567 (2017)

    Article  MathSciNet  Google Scholar 

  9. D.O. Cardoso, F.M.G. França, J. Gama, WCDS: A two-phase weightless neural system for data stream clustering. New Gener. Comput. 35(4), 391–416 (2017)

    Article  Google Scholar 

  10. S.S. Christensen, A.W. Andersen, T.M. Jorgensen, C. Liisberg, Visual guidance of a pig evisceration robot using neural networks. Pattern Recogn. Lett. 17(4), 345–355 (1996)

    Article  Google Scholar 

  11. T.G. Clarkson, C.K. Ng, D. Gorse, J.G. Taylor, Learning probabilistic RAM nets using VLSI structures. IEEE Trans. Comput. 41(12), 1552–1561 (1992)

    Article  Google Scholar 

  12. T.G. Clarkson, Y. Guan, J.G. Taylor, Generalization in probabilistic RAM nets. IEEE Trans. Comput. 4(2), 360–363 (1993)

    Google Scholar 

  13. M. de Gregorio, M. Giordano, Background estimation by weightless neural networks. Pattern Recogn. Lett. 96, 55–65 (2017)

    Article  Google Scholar 

  14. M. de Gregorio, M. Giordano, An experimental evaluation of weightless neural networks for multi-class classification. Appl. Soft Comput. 72, 338–354 (2018)

    Article  Google Scholar 

  15. W.R. de Oliveira, Quantum RAM based neural networks, in ed. by M. Verleysen, ESANN’09: Advances in Computational Intelligence and Learning, pp. 331–336 (2009). ISBN 2-930307-09-9

    Google Scholar 

  16. W.R. de Oliveira, A.J. da Silva, T.B. Ludermir, A. Leonel, W.R. Galindo, J.C. Pereira, Quantum logical neural networks, in Brazilian Symposium on Neural Networks, pp. 147–152 (2008)

    Google Scholar 

  17. W. de Oliveira, A.J. da Silva, T.B. Ludermir, Vector space weightless neural networks, in European Symposium on Artificial Neural Networks 2014, pp. 535–540 (2014)

    Google Scholar 

  18. F.M. de Paula Neto, T.B. Ludermir, W.R. de Oliveira, A.J. da Silva, Fitting parameters on quantum weightless neuron dynamics, in 2015 Brazilian Conference on Intelligent Systems, BRACIS 2015, Natal, Brazil, November 4–7, 2015 (IEEE Computer Society, 2015), pp. 169–174

    Google Scholar 

  19. F.M. de Paula Neto, W.R. de Oliveira, A.J. da Silva, T.B. Ludermir, Chaos in quantum weightless neuron node dynamics. Neurocomputing 183, 23–38 (2016)

    Article  Google Scholar 

  20. A.J. da Silva, W.R. de Oliveira, T.B. Ludermir, Weightless neural network parameters and architecture selection in a quantum computer. Neurocomputing 183, 13–22 (2016)

    Article  Google Scholar 

  21. F.M. de Paula Neto, W.R. de Oliveira, T.B. Ludermir, A.J. da Silva, Chaos in a quantum neuron: An open system approach. Neurocomputing 246, 3–11 (2017)

    Article  Google Scholar 

  22. M.C.P. de Souto, T.B. Ludermir, W.R. de Oliveira, Equivalence between ram-based neural networks and probabilistic automata. IEEE Trans. Neural Netw. 16(4), 996–999 (2005)

    Article  Google Scholar 

  23. D. Gorse, J.G. Taylor, On the equivalence and properties of noisy neural networks and probabilistic RAM nets. Phys. Lett. A 131(6), 326–332 (1988)

    Article  MathSciNet  Google Scholar 

  24. D. Gorse, J.G. Taylor, Reinforcement training strategies for probabilistic RAMs, in International Symposium on Neural Networks and Neurocomputing (NEURONET90), ed. by M. Novak, E. Pelikan, pp. 180–184 (1990)

    Google Scholar 

  25. L.K. Grover, Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  Google Scholar 

  26. L. Hepplewhite, T.J. Stonham, N-tuple texture recognition and the zero crossing sketch. Electronics Letters 33(1), 45–46 (1997)

    Article  Google Scholar 

  27. K. Hoffman, R. Kunze, Linear Algebra (Prentic-Hall, 1971)

    Google Scholar 

  28. T.M. Jorgensen, Classification of handwritten digits using a RAM neural net architecture. Int. J. Neural Syst. 8(1), 17–25 (1997)

    Article  Google Scholar 

  29. W.K. Kan, I. Aleksander, A probabilistic logic neuron network for associative learning, in Proc. of the IEEE International Conference on Neural Networks, vol. II, pp. 541–548, San Diego, California (June 1987)

    Google Scholar 

  30. T.B. Ludermir, Computability of logical neural networks. J. Intell. Syst. 2(1), 261–290 (1992)

    Google Scholar 

  31. T.B. Ludermir, A. de Carvalho, A.P. Braga, M.C.P. de Souto, Weightless neural models: A review of current and past works. Neural Comput. Surv. 2, 41–61 (1999)

    Google Scholar 

  32. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–137 (1943)

    Article  MathSciNet  Google Scholar 

  33. C. Myers, Delay Learning in Artificial Neural Networks (Chapman & Hall, 1992)

    Google Scholar 

  34. C. Myers, I. Aleksander, Learning algorithms for probabilistic logic nodes, in Abstracts of I Annual INNS Meeting, p. 205, Boston (1988)

    Google Scholar 

  35. C. Myers, I. Aleksander, Output functions for probabilistic logic nodes, in Proc. IEE International Conference on Artificial Neural Networks, pp. 310–314, UK (1989)

    Google Scholar 

  36. M.A. Nielsen, I.I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000)

    Google Scholar 

  37. M. Panella, G. Martinelli, Neural networks with quantum architecture and quantum learning. Int. J. Circuit Theory Appl. 39(1), 61–77 (2011)

    Article  Google Scholar 

  38. M.O. Rabin, Probabilistic automata. Inf. Control 6(3), 230–245 (1963)

    Article  MathSciNet  Google Scholar 

  39. S. Ramanan, R.S. Petersen, T.G. Clarkson, J.G. Taylor, pRAM nets for detection of small targets in sequence of infra-red images. Neural Networks 8(7-8), 1227–1237 (1995)

    Article  Google Scholar 

  40. R. Rohwer, M. Morciniec, A theoretical and experimental account of n-tuple classifier performance. Neural Computation 8(3), 629–642 (1996)

    Article  Google Scholar 

  41. R. Rohwer, M. Morciniec, The theoretical and experimental status of the n-tuple classifier. Neural Networks 11(1), 1–14 (1998)

    Article  Google Scholar 

  42. A.J. Silva, W.R. de Oliveira, T.B. Ludermir, Classical and superposed learning for quantum weightless neural networks. Neurocomputing 75, 52–60 (2012)

    Article  Google Scholar 

  43. M. Staffa, M. Berardinelli, G. Acampora, M. Giordano, M. de Gregorio, F. Ficuciello, A weightless neural network as a classifier to translate EEG signals into robotic hand commands, in 27th IEEE International Symposium on Robot and Human Interactive Communication (IEEE, 2018), pp. 487–490

    Google Scholar 

  44. J.G. Taylor, Spontaneous behaviour in neural networks. J. Theor. Biol. 36, 513–528 (1972)

    Article  Google Scholar 

  45. C. A. Trugenberger, Quantum pattern recognition. Quantum Inf. Process. 1, 471–493 (2002)

    Article  MathSciNet  Google Scholar 

  46. Y.S. Wang, B.J. Griffiths, B.A. Wilkie, A novel system for coloured object recognition. Comput. Ind. 32(1), 69–77 (1996)

    Article  Google Scholar 

  47. N. Weaver, Mathematical Quantization. Studies in Advanced Mathematics (Chapman & Hall/CRC, Boca Raton, FL, 2001)

    Google Scholar 

  48. R. Zhou, Q. Ding, Quantum M-P neural network. Int. J. Theor. Phys. 46(12), 3209–3215 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa B. Ludermir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ludermir, T.B. (2022). Weightless Neural Models: An Overview. In: Smith, A.E. (eds) Women in Computational Intelligence. Women in Engineering and Science. Springer, Cham. https://doi.org/10.1007/978-3-030-79092-9_15

Download citation

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy