Abstract
This paper presents an overview of research in Weightless Neural Models. Weightless Neural Networks (WNNs) do not have weighted connections between nodes. They use a different kind of neuron, usually based on RAM memory devices. The weightless (or RAM-based) neural networks are based on variations of the RAM node proposed by Aleksander. Recent works in the literature, such as the quantum weightless neuron, provide a novel perspective to this area. The paper describes classical and quantum weightless models and important recent works found in the literature, pointing out the challenges and future directions in the area.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
I. Aleksander, Emergent intelligent properties of progressively structured pattern recognition nets. Pattern Recogn. Lett. 1, 375–384 (1983)
I. Aleksander, H. Morton, An Introduction to Neural Computing, 2nd edn. (Chapman and Hall, London, UK, 1995)
I. Aleksander, H. Morton, Aristotle’s Laptop - The Discovery of our Informational Mind, vol. 1 of Series on Machine Consciousness (World Scientific, 2012)
I. Aleksander, H. Morton, Learning state prediction using a weightless neural explorer, in 22th European Symposium on Artificial Neural Networks, ESANN 2014, pp. 505–510 (2014)
I. Aleksander, M.V. Thomas, P.A. Bowden, WiSARD: a radical step forward in image recognition. Sensor Review 4(3), 120–124 (1984)
I. Aleksander, M. de Gregorio, F.M.G. França, P.M.V. Lima, H. Morton, A brief introduction to weightless neural systems, in ESANN 2009, 17th European Symposium on Artificial Neural Networks, pp. 299–305 (2009)
J. Austin, RAM-based neural networks: A short history, in RAM-Based Neural Networks, ed. by J. Austin (World Scientific, UK, 1998), pp. 3–17
D.O. Cardoso, J. Gama, F.M.G. França, Weightless neural networks for open set recognition. Machine Learning 106(9-10), 1547–1567 (2017)
D.O. Cardoso, F.M.G. França, J. Gama, WCDS: A two-phase weightless neural system for data stream clustering. New Gener. Comput. 35(4), 391–416 (2017)
S.S. Christensen, A.W. Andersen, T.M. Jorgensen, C. Liisberg, Visual guidance of a pig evisceration robot using neural networks. Pattern Recogn. Lett. 17(4), 345–355 (1996)
T.G. Clarkson, C.K. Ng, D. Gorse, J.G. Taylor, Learning probabilistic RAM nets using VLSI structures. IEEE Trans. Comput. 41(12), 1552–1561 (1992)
T.G. Clarkson, Y. Guan, J.G. Taylor, Generalization in probabilistic RAM nets. IEEE Trans. Comput. 4(2), 360–363 (1993)
M. de Gregorio, M. Giordano, Background estimation by weightless neural networks. Pattern Recogn. Lett. 96, 55–65 (2017)
M. de Gregorio, M. Giordano, An experimental evaluation of weightless neural networks for multi-class classification. Appl. Soft Comput. 72, 338–354 (2018)
W.R. de Oliveira, Quantum RAM based neural networks, in ed. by M. Verleysen, ESANN’09: Advances in Computational Intelligence and Learning, pp. 331–336 (2009). ISBN 2-930307-09-9
W.R. de Oliveira, A.J. da Silva, T.B. Ludermir, A. Leonel, W.R. Galindo, J.C. Pereira, Quantum logical neural networks, in Brazilian Symposium on Neural Networks, pp. 147–152 (2008)
W. de Oliveira, A.J. da Silva, T.B. Ludermir, Vector space weightless neural networks, in European Symposium on Artificial Neural Networks 2014, pp. 535–540 (2014)
F.M. de Paula Neto, T.B. Ludermir, W.R. de Oliveira, A.J. da Silva, Fitting parameters on quantum weightless neuron dynamics, in 2015 Brazilian Conference on Intelligent Systems, BRACIS 2015, Natal, Brazil, November 4–7, 2015 (IEEE Computer Society, 2015), pp. 169–174
F.M. de Paula Neto, W.R. de Oliveira, A.J. da Silva, T.B. Ludermir, Chaos in quantum weightless neuron node dynamics. Neurocomputing 183, 23–38 (2016)
A.J. da Silva, W.R. de Oliveira, T.B. Ludermir, Weightless neural network parameters and architecture selection in a quantum computer. Neurocomputing 183, 13–22 (2016)
F.M. de Paula Neto, W.R. de Oliveira, T.B. Ludermir, A.J. da Silva, Chaos in a quantum neuron: An open system approach. Neurocomputing 246, 3–11 (2017)
M.C.P. de Souto, T.B. Ludermir, W.R. de Oliveira, Equivalence between ram-based neural networks and probabilistic automata. IEEE Trans. Neural Netw. 16(4), 996–999 (2005)
D. Gorse, J.G. Taylor, On the equivalence and properties of noisy neural networks and probabilistic RAM nets. Phys. Lett. A 131(6), 326–332 (1988)
D. Gorse, J.G. Taylor, Reinforcement training strategies for probabilistic RAMs, in International Symposium on Neural Networks and Neurocomputing (NEURONET90), ed. by M. Novak, E. Pelikan, pp. 180–184 (1990)
L.K. Grover, Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)
L. Hepplewhite, T.J. Stonham, N-tuple texture recognition and the zero crossing sketch. Electronics Letters 33(1), 45–46 (1997)
K. Hoffman, R. Kunze, Linear Algebra (Prentic-Hall, 1971)
T.M. Jorgensen, Classification of handwritten digits using a RAM neural net architecture. Int. J. Neural Syst. 8(1), 17–25 (1997)
W.K. Kan, I. Aleksander, A probabilistic logic neuron network for associative learning, in Proc. of the IEEE International Conference on Neural Networks, vol. II, pp. 541–548, San Diego, California (June 1987)
T.B. Ludermir, Computability of logical neural networks. J. Intell. Syst. 2(1), 261–290 (1992)
T.B. Ludermir, A. de Carvalho, A.P. Braga, M.C.P. de Souto, Weightless neural models: A review of current and past works. Neural Comput. Surv. 2, 41–61 (1999)
W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–137 (1943)
C. Myers, Delay Learning in Artificial Neural Networks (Chapman & Hall, 1992)
C. Myers, I. Aleksander, Learning algorithms for probabilistic logic nodes, in Abstracts of I Annual INNS Meeting, p. 205, Boston (1988)
C. Myers, I. Aleksander, Output functions for probabilistic logic nodes, in Proc. IEE International Conference on Artificial Neural Networks, pp. 310–314, UK (1989)
M.A. Nielsen, I.I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000)
M. Panella, G. Martinelli, Neural networks with quantum architecture and quantum learning. Int. J. Circuit Theory Appl. 39(1), 61–77 (2011)
M.O. Rabin, Probabilistic automata. Inf. Control 6(3), 230–245 (1963)
S. Ramanan, R.S. Petersen, T.G. Clarkson, J.G. Taylor, pRAM nets for detection of small targets in sequence of infra-red images. Neural Networks 8(7-8), 1227–1237 (1995)
R. Rohwer, M. Morciniec, A theoretical and experimental account of n-tuple classifier performance. Neural Computation 8(3), 629–642 (1996)
R. Rohwer, M. Morciniec, The theoretical and experimental status of the n-tuple classifier. Neural Networks 11(1), 1–14 (1998)
A.J. Silva, W.R. de Oliveira, T.B. Ludermir, Classical and superposed learning for quantum weightless neural networks. Neurocomputing 75, 52–60 (2012)
M. Staffa, M. Berardinelli, G. Acampora, M. Giordano, M. de Gregorio, F. Ficuciello, A weightless neural network as a classifier to translate EEG signals into robotic hand commands, in 27th IEEE International Symposium on Robot and Human Interactive Communication (IEEE, 2018), pp. 487–490
J.G. Taylor, Spontaneous behaviour in neural networks. J. Theor. Biol. 36, 513–528 (1972)
C. A. Trugenberger, Quantum pattern recognition. Quantum Inf. Process. 1, 471–493 (2002)
Y.S. Wang, B.J. Griffiths, B.A. Wilkie, A novel system for coloured object recognition. Comput. Ind. 32(1), 69–77 (1996)
N. Weaver, Mathematical Quantization. Studies in Advanced Mathematics (Chapman & Hall/CRC, Boca Raton, FL, 2001)
R. Zhou, Q. Ding, Quantum M-P neural network. Int. J. Theor. Phys. 46(12), 3209–3215 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Ludermir, T.B. (2022). Weightless Neural Models: An Overview. In: Smith, A.E. (eds) Women in Computational Intelligence. Women in Engineering and Science. Springer, Cham. https://doi.org/10.1007/978-3-030-79092-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-79092-9_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-79091-2
Online ISBN: 978-3-030-79092-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)