Skip to main content

Eye Diseases Classification Using Deep Learning

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Abstract

Eye disease recognition is a challenging task, which usually requires years of medical experience. In this work, we conducted research that can be a start for the most versatile solution. We tried to solve the problem of the classification of different eye diseases using neural networks. The first step of this work consists of gathering all publicly available eye disease datasets and preprocessing them to make the experiments as generalized as possible. This led to the creation of a dataset composed of over 30,000 images. The aim was to teach the model the actual symptoms of the diseases instead of adjusting the results to a given part of the dataset. Several deep convolutional neural networks were used as feature extractors and they were combined with the Synergic Deep Learning model. We conducted experiments on the data and were able to achieve promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cataract image dataset (2019). https://www.kaggle.com/jr2ngb/cataractdataset/

  2. International competition on ocular disease intelligent recognition, July 2019. https://odir2019.grand-challenge.org/

  3. Joint shantou international eye centre (jsiec) (2019). https://www.kaggle.com/linchundan/fundusimage1000

  4. World report on vision (2019). https://www.who.int/publications/i/item/9789241516570

  5. Almazroa, A., Alodhayb, S., et al.: Retinal fundus images for glaucoma analysis: the riga dataset. In: Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, vol. 10579, p. 105790B. SPIE (2018)

    Google Scholar 

  6. Bajwa, M.N., Malik, M.I., et al.: Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning. BMC Med. Inf. Dec. Making 19(1), 1–16 (2019)

    Google Scholar 

  7. Budai, A., Bock, R., et al.: Robust vessel segmentation in fundus images. Int. J. Biomed. Imaging 2013 (2013)

    Google Scholar 

  8. Cuadros, J., Bresnick, G.: Eyepacs: an adaptable telemedicine system for diabetic retinopathy screening. J. Diabetes Sci. Technol. 3(3), 509–516 (2009)

    Article  Google Scholar 

  9. Das, S., Kharbanda, K., et al.: Deep learning architecture based on segmented fundus image features for classification of diabetic retinopathy. Biomed. Sig. Process. Control 68, 102600 (2021)

    Google Scholar 

  10. Decencière, E., Zhang, X., et al.: Feedback on a publicly distributed database: the messidor database. Image Anal. Stereol. 33(3), 231–234 (2014)

    Google Scholar 

  11. Diaz-Pinto, A., Morales, S., et al.: CNNs for automatic glaucoma assessment using fundus images: an extensive validation. Biomed. Eng. Online 18(1), 1–19 (2019)

    Google Scholar 

  12. Dong, Y., Wang, Q., Zhang, Q., Yang, J.: Classification of cataract fundus image based on retinal vascular information. In: Xing, C., Zhang, Y., Liang, Y. (eds.) ICSH 2016. LNCS, vol. 10219, pp. 166–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59858-1_16

  13. Fumero, F., Alayón, S., et al.: Rim-one: an open retinal image database for optic nerve evaluation. In: 2011 24th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–6. IEEE (2011)

    Google Scholar 

  14. Gayathri, S., Gopi, V.P., Palanisamy, P.: A lightweight CNN for diabetic retinopathy classification from fundus images. Biomed. Signal Process. Control 62, 102115 (2020)

    Google Scholar 

  15. Gómez-Valverde, J.J., Antón, A., et al.: Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning. Biomed. Opt. Express 10(2), 892–913 (2019)

    Article  Google Scholar 

  16. Haleem, M.S., Han, L., et al.: Regional image features model for automatic classification between normal and glaucoma in fundus and scanning laser ophthalmoscopy (SLO) images. J. Med. Syst. 40(6), 132 (2016)

    Google Scholar 

  17. Holm, S., Russell, G., et al.: Dr hagis-a fundus image database for the automatic extraction of retinal surface vessels from diabetic patients. J. Med. Imaging 4(1), 014503 (2017)

    Google Scholar 

  18. Hoover, A., Goldbaum, M.: Stare public online database. http://www.ces.clemson.edu/~ahoover/stare/

  19. Kälviäinen, R., Uusitalo, H.: Diaretdb1 diabetic retinopathy database and evaluation protocol. In: Medical Image Understanding and Analysis, vol. 2007, p. 61 (2007)

    Google Scholar 

  20. Kauppi, T., Kalesnykiene, V., et al.: Diaretdb0: Evaluation database and methodology for diabetic retinopathy algorithms. In: Machine Vision and Pattern Recognition Research Group, Lappeenranta University of Technology, Finland, vol. 73, pp. 1–17 (2006)

    Google Scholar 

  21. Li, F., et al.: Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs. Graefes Arch. Clin. Exp. Ophthalmol. 258(4), 851–867 (2020). https://doi.org/10.1007/s00417-020-04609-8

  22. Lu, W., Tong, Y., et al.: Applications of artificial intelligence in ophthalmology: general overview. J. Ophthalmol. (2018)

    Google Scholar 

  23. Orlando, J.I., Fu, H., et al.: Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 59, 101570 (2020)

    Google Scholar 

  24. Porwal, P., Pachade, S., et al.: Indian diabetic retinopathy image dataset (idrid): a database for diabetic retinopathy screening research. Data 3(3), 25 (2018)

    Article  Google Scholar 

  25. Qureshi, I., Ma, J., Abbas, Q.: Diabetic retinopathy detection and stage classification in eye fundus images using active deep learning. Multimedia Tools Appl. 80(8), 11691–11721 (2021). https://doi.org/10.1007/s11042-020-10238-4

  26. Shankar, K., Sait, A.R.W., et al.: Automated detection and classification of fundus diabetic retinopathy images using synergic deep learning model. Pattern Recogn. Lett. 133, 210–216 (2020)

    Article  Google Scholar 

  27. Shankar, K., Zhang, Y., et al.: Hyperparameter tuning deep learning for diabetic retinopathy fundus image classification. IEEE Access 8, 118164–118173 (2020)

    Article  Google Scholar 

  28. Staal, J., Abràmoff, M.D., et al.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  29. Zhang, H., Niu, K., et al.: Automatic cataract grading methods based on deep learning. Comput. Methods Programs Biomed. 182, 104978 (2019)

    Google Scholar 

  30. Zhang, J., Xia, Y., et al.: Classification of medical images and illustrations in the biomedical literature using synergic deep learning. CoRR abs/1706.09092 (2017)

    Google Scholar 

  31. Zhang, Z., Yin, F.S., et al.: Origa-light: An online retinal fundus image database for glaucoma analysis and research. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. pp. 3065–3068. IEEE (2010)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Foundation for Supporting the Development of Radiocommunication and Multimedia Techniques, which provided a scholarship to help with the research process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrycja Haraburda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haraburda, P., Dabała, Ł. (2022). Eye Diseases Classification Using Deep Learning. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13231. Springer, Cham. https://doi.org/10.1007/978-3-031-06427-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06427-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06426-5

  • Online ISBN: 978-3-031-06427-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy