Skip to main content

Blockchain in Healthcare: A Review

  • Chapter
  • First Online:
Recent Advances in Blockchain Technology

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 237))

Abstract

Since Bitcoin introduced the blockchain, research has been conducted to expand its use cases beyond finance. One sector where blockchain is anticipated to have a big influence is healthcare. Researchers and practitioners in health informatics constantly struggle to keep up with the advancement of this field’s young but quickly expanding body of research. This chapter provides a thorough review of studies carried out to demonstrate the benefits of blockchain technology that have been utilized in the domain of healthcare, in addition to the pandemic, COVID-19, which led to a massive and pervasive repercussion on healthcare and has significantly accelerated the implementation of digital technology. This chapter also depicts how researchers have presented the use cases for adopting Blockchain technology in the healthcare sector. The state-of-the-art blockchain application development for healthcare has also been described in this chapter, along with any inadequacies and potential future study topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nakamoto, S., Bitcoin, A.: A peer-to-peer electronic cash system. Bitcoin 4, 2 (2008). https://bitcoin.org/bitcoin.pdf. Last accessed 15 Apr 2022

  2. Swan, M.: Blockchain: blueprint for a new economy. O’Reilly Media, Inc. (2015)

    Google Scholar 

  3. Litecoin—Open source P2P digital currency. https://litecoin.org/. Accessed 15 Apr 2022

  4. The Monero Project. https://getmonero.org/the-monero-project/. Accessed 12 Apr 2022

  5. Dash Official Website|Dash Crypto Currency—Dash. https://www.dash.org/. Accessed 11 Apr 2022

  6. NEO Smart Economy (2018). https://neo.org/. Accessed 11 Apr 2022

  7. Ethereum classic—a smarter blockchain that takes digital assets further 2018. https://ethereumclassic.org/. Accessed 12 Apr 2022

  8. Ethereum Project. https://www.ethereum.org/. Accessed 11 Apr 2022

  9. Qtum (2018). https://qtum.org/en. Accessed 15 Apr 2022

  10. Burniske, C., et al.: How blockchain technology can enhance electronic health record operability. In: Ark Invest. New York, NY, USA (2016)

    Google Scholar 

  11. Jovanovic, B., Rousseau, P.L.: General purpose technologies. In: Handbook of Economic Growth, vol. 1, pp. 1181–1224. Elsevier (2005)

    Google Scholar 

  12. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference (2018)

    Google Scholar 

  13. Ting, D.S.W., et al.: Digital technology and COVID-19. Nat. Med. 26(4), 459–461 (2020)

    Google Scholar 

  14. Kuo, T.-T., Kim, H.-E., Ohno-Machado, L.: Blockchain distributed ledger technologies for biomedical and health care applications. J. Am. Med. Inform. Assoc. 24(6), 1211–1220 (2017)

    Article  Google Scholar 

  15. Agbo, C.C., Mahmoud, Q.H., Eklund, J.M.: Blockchain technology in healthcare: a systematic review. Healthcare 7(2) (2019). MDPI

    Google Scholar 

  16. Klaine, P.V., et al.: Privacy-preserving contact tracing and public risk assessment using blockchain for COVID-19 pandemic. IEEE Internet of Things Mag. 3(3), 58–63 (2020)

    Google Scholar 

  17. Shamsi, K., Khorasani, K.E., Shayegan, M.J.: A secure and efficient approach for issuing KYC token as COVID-19 health certificate based on stellar blockchain network (2020). arXiv:2010.02169

  18. Alsamhi, S.H., et al.: Blockchain for decentralized multi‐drone to combat COVID‐19 and future pandemics: framework and proposed solutions. Trans. Emerg. Telecommun. Technol. 32(9), e4255 (2021)

    Google Scholar 

  19. Celesti, A., et al.: Blockchain-based healthcare workflow for tele-medical laboratory in federated hospital IoT clouds. Sensors 20(9), 2590 (2020)

    Google Scholar 

  20. Housley, R.: Public key infrastructure (PKI). The internet encyclopedia (2004)

    Google Scholar 

  21. Azaria, A., et al.: Medrec: using blockchain for medical data access and permission management. In: 2016 2nd International Conference on Open and Big Data (OBD). IEEE (2016)

    Google Scholar 

  22. Ahram, T., et al.: Blockchain technology innovations. In: 2017 IEEE Technology & Engineering Management Conference (TEMSCON). IEEE (2017)

    Google Scholar 

  23. Dagher, G.G., et al.: Ancile: privacy-preserving framework for access control and interoperability of electronic health records using blockchain technology. Sustain. Cities Soc. 39, 283–297 (2018)

    Google Scholar 

  24. Li, H., et al.: Blockchain-based data preservation system for medical data. J. Med. Syst. 42(8), 1–13 (2018)

    Google Scholar 

  25. Xia, Q.I., et al.: MeDShare: trust-less medical data sharing among cloud service providers via blockchain. IEEE Access 5, 14757–14767 (2017)

    Article  Google Scholar 

  26. Jiang, S., et al.: Blochie: a blockchain-based platform for healthcare information exchange. In: 2018 IEEE International Conference on Smart Computing (smartcomp). IEEE (2018)

    Google Scholar 

  27. Zhang, P., et al.: FHIRChain: applying blockchain to securely and scalably share clinical data. Comput. Struct. Biotechnol. J. 16, 267–278 (2018)

    Google Scholar 

  28. Fan, K., et al.: Medblock: efficient and secure medical data sharing via blockchain. J. Med. Syst. 42(8), 1–11 (2018)

    Google Scholar 

  29. Bocek, T., et al.: Blockchains everywhere-a use-case of blockchains in the pharma supply-chain. In: 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). IEEE (2017)

    Google Scholar 

  30. Liu, P.T.S.: Medical record system using blockchain, big data and tokenization. In: International Conference on Information and Communications Security. Springer, Cham (2016)

    Google Scholar 

  31. Nugent, T., Upton, D., Cimpoesu, M.: Improving data transparency in clinical trials using blockchain smart contracts. F1000Research 5 (2016)

    Google Scholar 

  32. Mytis-Gkometh, P., et al.: Notarization of knowledge retrieval from biomedical repositories using blockchain technology. In: International Conference on Biomedical and Health Informatics. Springer, Singapore (2017)

    Google Scholar 

  33. Griggs, K.N., et al.: Healthcare blockchain system using smart contracts for secure automated remote patient monitoring. J. Med. Syst. 42(7), 1–7 (2018)

    Google Scholar 

  34. Liang, X., et al.: Integrating blockchain for data sharing and collaboration in mobile healthcare applications. In: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). IEEE (2017)

    Google Scholar 

  35. Saravanan, M., et al.: SMEAD: A secured mobile enabled assisting device for diabetics monitoring. In: 2017 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). IEEE (2017)

    Google Scholar 

  36. Ichikawa, D., Kashiyama, M., Ueno, T.: Tamper-resistant mobile health using blockchain technology. JMIR mHealth uHealth 5(7), e7938 (2017)

    Article  Google Scholar 

  37. Uddin, M.A., et al.: Continuous patient monitoring with a patient centric agent: a block architecture. IEEE Access 6, 32700–32726 (2018)

    Google Scholar 

  38. Thomas, C., et al.: Blockchain-based medical insurance storage systems. In: Recent Trends in Blockchain for Information Systems Security and Privacy, pp 219–235. CRC Press (2021)

    Google Scholar 

  39. Mamoshina, P., et al.: Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare. Oncotarget 9(5), 5665 (2018)

    Google Scholar 

  40. Juneja, A., Marefat, M.: Leveraging blockchain for retraining deep learning architecture in patient-specific arrhythmia classification. In: 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). IEEE (2018)

    Google Scholar 

  41. Roman-Belmonte, J.M., De la Corte-Rodriguez, H., Rodriguez-Merchan, E.C.: How blockchain technology can change medicine. Postgrad. Med. 130(4), 420–427 (2018)

    Article  Google Scholar 

  42. Liu, W., et al.: Advanced block-chain architecture for e-health systems. In: 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom). IEEE (2017)

    Google Scholar 

  43. Magyar, G.: Blockchain: Solving the privacy and research availability tradeoff for EHR data: a new disruptive technology in health data management. In: 2017 IEEE 30th Neumann Colloquium (NC). IEEE (2017)

    Google Scholar 

  44. Cunningham, J., Ainsworth, J.: Enabling patient control of personal electronic health records through distributed ledger technology. Stud. Health Technol. Inform. 245, 45–48 (2018)

    Google Scholar 

  45. Radanović, I., Likić, R.: Opportunities for use of blockchain technology in medicine. Appl. Health Econ. Health Policy 16(5), 583–590 (2018)

    Article  Google Scholar 

  46. Engelhardt, M.A.: Hitching healthcare to the chain: an introduction to blockchain technology in the healthcare sector. Technol. Innov. Manage. Rev. 7(10) (2017)

    Google Scholar 

  47. Alhadhrami, Z., et al.: Introducing blockchains for healthcare. In: 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA). IEEE (2017)

    Google Scholar 

  48. Patel, V.: A framework for secure and decentralized sharing of medical imaging data via blockchain consensus. Health Inform. J. 25(4), 1398–1411 (2019)

    Article  Google Scholar 

  49. Gordon, W.J., Catalini, C.: Blockchain technology for healthcare: facilitating the transition to patient-driven interoperability. Comput. Struct. Biotechnol. J. 16, 224–230 (2018)

    Article  Google Scholar 

  50. Esposito, C., et al.: Blockchain: a panacea for healthcare cloud-based data security and privacy? IEEE Cloud Comput. 5(1), 31–37

    Google Scholar 

  51. Roehrs, A., Da Costa, C.A., da Rosa Righi, R.: OmniPHR: a distributed architecture model to integrate personal health records. J. Biomed. Inf. 71, 70–81 (2017)

    Google Scholar 

  52. Dubovitskaya, A., et al.: Secure and trustable electronic medical records sharing using blockchain. In: AMIA Annual Symposium Proceedings, vol. 2017. American Medical Informatics Association (2017)

    Google Scholar 

  53. Mettler, M.: Blockchain technology in healthcare: the revolution starts here. In: 2016 IEEE 18th International Conference on E-health Networking, Applications and Services (Healthcom). IEEE (2016)

    Google Scholar 

  54. Kamau, G., et al.: Blockchain technology: is this the solution to emr interoperability and security issues in developing countries? In: 2018 IST-Africa Week Conference (IST-Africa). IEEE (2018)

    Google Scholar 

  55. Kamel Boulos, M.N., Wilson, J.T., Clauson, K.A.: Geospatial blockchain: promises, challenges, and scenarios in health and healthcare. Int. J. Health Geograph. 17(1), 1–10 (2018)

    Google Scholar 

  56. Rifi, N., et al.: Towards using blockchain technology for eHealth data access management. In: 2017 Fourth International Conference on Advances in Biomedical Engineering (ICABME). IEEE (2017)

    Google Scholar 

  57. Hussein, A.F., et al.: A medical records managing and securing blockchain based system supported by a genetic algorithm and discrete wavelet transform. Cogn. Syst. Res. 52, 1–11 (2018)

    Google Scholar 

  58. Guo, R., et al.: Secure attribute-based signature scheme with multiple authorities for blockchain in electronic health records systems. IEEE Access 6, 11676–11686 (2018)

    Google Scholar 

  59. Wang, H., Song, Y.: Secure cloud-based EHR system using attribute-based cryptosystem and blockchain. J. Med. Syst. 42(8), 1–9 (2018)

    Article  MathSciNet  Google Scholar 

  60. Zhao, H., et al.: Efficient key management scheme for health blockchain. CAAI Trans. Intell. Technol. 3(2), 114–118 (2018)

    Google Scholar 

  61. Zhao, H., et al.: Lightweight backup and efficient recovery scheme for health blockchain keys. In: 2017 IEEE 13th International Symposium on Autonomous Decentralized System (ISADS). IEEE (2017)

    Google Scholar 

  62. Zhang, X., Poslad, S.: Blockchain support for flexible queries with granular access control to electronic medical records (EMR). In: 2018 IEEE International Conference on Communications (ICC). IEEE (2018)

    Google Scholar 

  63. Al Omar, A., et al.: Medibchain: a blockchain based privacy preserving platform for healthcare data. In: International Conference on Security, Privacy and Anonymity in Computation, Communication and Storage. Springer, Cham (2017)

    Google Scholar 

  64. Yue, X., et al.: Healthcare data gateways: found healthcare intelligence on blockchain with novel privacy risk control. J. Med. Syst. 40(10), 1–8 (2016)

    Google Scholar 

  65. Cichosz, S.L., et al.: How to use blockchain for diabetes health care data and access management: an operational concept. J. Diab. Sci. Technol. 13(2), 248–253 (2019)

    Google Scholar 

  66. Tseng, J.-H., et al.: Governance on the drug supply chain via gcoin blockchain. Int. J. Environ. Res. Public Health 15(6), 1055 (2018)

    Google Scholar 

  67. Mackey, T.K., Nayyar, G.: A review of existing and emerging digital technologies to combat the global trade in fake medicines. Expert Opin. Drug Saf. 16(5), 587–602 (2017)

    Article  Google Scholar 

  68. Benchoufi, M., Ravaud, P.: Blockchain technology for improving clinical research quality. Trials 18(1), 1–5 (2017)

    Article  Google Scholar 

  69. Shae, Z., Tsai, J.J.P.: On the design of a blockchain platform for clinical trial and precision medicine. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). IEEE (2017)

    Google Scholar 

  70. Angeletti, F., Chatzigiannakis, I., Vitaletti, A.: The role of blockchain and IoT in recruiting participants for digital clinical trials. In: 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM). IEEE (2017)

    Google Scholar 

  71. Funk, E., et al.: Blockchain technology: a data framework to improve validity, trust, and accountability of information exchange in health professions education. Acad. Med. 93(12), 1791–1794 (2018)

    Google Scholar 

  72. Benchoufi, M., Porcher, R., Ravaud, P.: Blockchain protocols in clinical trials: transparency and traceability of consent. F1000Research 6 (2017)

    Google Scholar 

  73. Dey, T., et al.: HealthSense: a medical use case of Internet of Things and blockchain. In: 2017 International Conference on Intelligent Sustainable Systems (ICISS). IEEE (2017)

    Google Scholar 

  74. Zhang, J., Xue, N., Huang, X.: A secure system for pervasive social network-based healthcare. IEEE Access 4, 9239–9250 (2016)

    Article  Google Scholar 

  75. Weiss, M., et al.: Blockchain as an enabler for public mHealth solutions in South Africa. In: 2017 IST-Africa week conference (IST-Africa). IEEE (2017)

    Google Scholar 

  76. Angraal, S., Krumholz, H.M., Schulz, W.L.: Blockchain technology: applications in health care. Circ. Cardiovasc. Qual. Outcomes 10(9), e003800 (2017)

    Google Scholar 

  77. Gatteschi, V., et al.: Blockchain and smart contracts for insurance: is the technology mature enough? Future Internet 10(2), 20 (2018)

    Google Scholar 

  78. Shae, Z., Tsai, J.: Transform blockchain into distributed parallel computing architecture for precision medicine. In: 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS). IEEE (2018)

    Google Scholar 

  79. Mahmood, S., et al.: Global preparedness against COVID-19: we must leverage the power of digital health. JMIR Public Health Surveill. 6(2), e18980 (2020)

    Google Scholar 

  80. Bay, J., et al.: BlueTrace: a privacy-preserving protocol for community-driven contact tracing across borders. Government Technology Agency-Singapore, Tech. Rep 18 (2020)

    Google Scholar 

  81. Idrees, S.M., Nowostawski, M., Jameel, R.: Blockchain-based digital contact tracing apps for COVID-19 pandemic management: Issues, challenges, solutions, and future directions. JMIR Med. Inf. 9(2), e25245 (2021)

    Google Scholar 

  82. Garg, C., Bansal, A., Padappayil, R.P.: COVID-19: prolonged social distancing implementation strategy using blockchain-based movement passes. J. Med. Syst. 44(9), 1–3 (2020)

    Google Scholar 

  83. Xu, H., et al.: BeepTrace: blockchain-enabled privacy-preserving contact tracing for COVID-19 pandemic and beyond. IEEE Internet Things J. 8(5), 3915–3929 (2020)

    Google Scholar 

  84. Eisenstadt, M., et al.: COVID-19 antibody test/vaccination certification: there’s an app for that. IEEE Open J. Eng. Med. Biol. 1, 148–155 (2020)

    Google Scholar 

  85. Hasan, H.R., et al.: Blockchain-based solution for COVID-19 digital medical passports and immunity certificates. IEEE Access 8, 222093–222108 (2020)

    Google Scholar 

  86. Bansal, A., Garg, C., Padappayil, R.P.: Optimizing the implementation of COVID-19 “immunity certificates” using blockchain. J. Med. Syst. 44(9), 1–2 (2020)

    Article  Google Scholar 

  87. Chaudhari, S., et al.: Framework for a DLT based COVID-19 passport. In: Intelligent Computing, pp. 108–123. Springer, Cham (2021)

    Google Scholar 

  88. Bieri, C.: An overview into the InterPlanetary File System (IPFS): use cases, advantages, and drawbacks. Communication Systems XIV; University of Zurich: Zurich, Switzerland 78 (2021)

    Google Scholar 

  89. Hernández-Ramos, J.L., et al.: Sharing pandemic vaccination certificates through blockchain: case study and performance evaluation. In: Wireless Communications and Mobile Computing 2021 (2021)

    Google Scholar 

  90. Alexander, G.C., Qato, D.M.: Ensuring access to medications in the US during the COVID-19 pandemic. JAMA 324(1), 31–32 (2020)

    Google Scholar 

  91. Gordon, D.E., et al.: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583(7816), 459–468 (2020)

    Google Scholar 

  92. Ho, D.: Addressing COVID-19 drug development with artificial intelligence. Adv. Intell. Syst. 2(5), 2000070 (2020)

    Article  Google Scholar 

  93. Khurshid, A.: Applying blockchain technology to address the crisis of trust during the COVID-19 pandemic. JMIR Med. Inform. 8(9), e20477 (2020)

    Article  Google Scholar 

  94. Kovács, G., Falagara Sigala, I.: Lessons learned from humanitarian logistics to manage supply chain disruptions. J. Supply Chain Manage. 57(1), 41–49 (2021)

    Google Scholar 

  95. Antal, C., et al.: Blockchain platform for COVID-19 vaccine supply management. IEEE Open J. Comput. Soc. 2, 164–178 (2021)

    Google Scholar 

  96. Ahmad, R.W., et al.: Blockchain-based forward supply chain and waste management for COVID-19 medical equipment and supplies. IEEE Access 9, 44905–44927 (2021)

    Google Scholar 

  97. Kumar, R., Tripathi, R.: A secure and distributed framework for sharing COVID-19 patient reports using consortium blockchain and IPFS. In: 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC). IEEE (2020)

    Google Scholar 

  98. Christodoulou, K., et al.: Health information exchange with blockchain amid COVID-19-like pandemics. In: 2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS). IEEE (2020)

    Google Scholar 

  99. Panda, S.K., Mohammad, G.B., Nandan Mohanty, S., Sahoo, S: Smart contract-based land registry system to reduce frauds and time delay. Secur. Priv., e172 (2021). https://doi.org/10.1002/spy2.172

  100. Panda, S.K., Satapathy, S.C.: Drug traceability and transparency in medical supply chain using blockchain for easing the process and creating trust between stakeholders and consumers. Pers. Ubiquit. Comput. (2021). https://doi.org/10.1007/s00779-021-01588-3

    Article  Google Scholar 

  101. Niveditha, V.R., Sekaran, K., Singh, K.A., Panda, S.K.: Effective prediction of bitcoin price using wolf search algorithm and bidirectional LSTM on internet of things data. Int. J. Syst. Syst. Eng. 11(3–4), 224–236

    Google Scholar 

  102. Lee, H.-A., et al.: Global infectious disease surveillance and case tracking system for COVID-19: development study. JMIR Med. Inf. 8(12), e20567 (2020)

    Google Scholar 

  103. Sathya, A.R., Panda, S.K., Hanumanthakari, S.: Enabling smart education system using blockchain technology. In: Panda, S.K., Jena, A.K., Swain, S.K., Satapathy, S.C. (eds.) Blockchain Technology: Applications and Challenges. Intelligent Systems Reference Library, vol. 203. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69395-4_10

  104. Lokre, S.S., Naman, V., Priya, S., Panda, S.K.: Gun tracking system using blockchain technology. In: Panda S.K., Jena A.K., Swain S.K., Satapathy S.C. (eds.) Blockchain Technology: Applications and Challenges. Intelligent Systems Reference Library, vol. 203. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69395-4_16

  105. Panda, S.K., Daliyet, S.P., Lokre, S.S., Naman, V.: Distributed ledger technology in the construction industry using Corda. In: The New Advanced Society: Artificial Intelligence and Industrial Internet of Things Paradigm. https://doi.org/10.1002/9781119884392.ch2

  106. Yli-Huumo, J., et al.: Where is current research on blockchain technology?—a systematic review. PloS One 11(10), e0163477 (2016)

    Google Scholar 

  107. Panda, S.K., Satapathy, S.C.: An investigation into smart contract deployment on ethereum platform using Web3.js and solidity using blockchain. In: Bhateja, V., Satapathy, S.C., Travieso-González, C.M., Aradhya, V.N.M. (eds.) Data Engineering and Intelligent Computing. Advances in Intelligent Systems and Computing, vol. 1. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0171-2_52

  108. Panda, S.K., Rao, D.C., Satapathy, S.C.: An investigation into the usability of blockchain technology in internet of things. In: Bhateja, V., Satapathy, S.C., Travieso-González, C.M., Aradhya, V.N.M. (eds.) Data Engineering and Intelligent Computing. Advances in Intelligent Systems and Computing, vol. 1. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0171-2_53

  109. Panda, S.K., Dash, S.P., Jena, A.K.: Optimization of block query response using evolutionary algorithm. In: Bhateja, V., Satapathy, S.C., Travieso-González, C.M., Aradhya, V.N.M. (eds.) Data Engineering and Intelligent Computing. Advances in Intelligent Systems and Computing, vol. 1. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0171-2_54

  110. Foglia, M.: Patients and privacy: GDPR compliance for healthcare organizations. Eur. J. Priv. L. Tech. 43 (2020)

    Google Scholar 

  111. Nanda, S.K., Panda, S.K., Das, M., Satapathy, S.C.: Automating vehicle insurance process using smart contract and ethereum. In: Chakravarthy, V.V.S.S.S., Flores-Fuentes, W., Bhateja, V., Biswal, B. (eds.) Advances in Micro-Electronics, Embedded Systems and IoT. Lecture Notes in Electrical Engineering, vol. 838. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-8550-7_23

  112. Panda, S.K., Elngar, A.A., Balas, V.E., Kayed, M. (eds.): Bitcoin and Blockchain: History and Current Applications, 1st edn. CRC Press (2020). https://doi.org/10.1201/9781003032588

  113. Blockchain technology: applications and challenges. In: Panda, S.K., Jena, A.K., Swain, S.K., Satapathy, S.C. (eds.) Springer, Intelligent Systems Reference Library. https://doi.org/10.1007/978-3-030-69395-4

  114. Varaprasada Rao, K., Panda, S.K.: A design model of copyright protection system based on distributed ledger technology. In: Satapathy, S.C., Lin, J.C.W., Wee, L.K., Bhateja, V., Rajesh, T.M. (eds.) Computer Communication, Networking and IoT. Lecture Notes in Networks and Systems, vol. 459. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-1976-3_17

  115. Varaprasada Rao, K., Panda, S.K.: Secure electronic voting (e-voting) system based on blockchain on various platforms. In: Satapathy, S.C., Lin, J.C.W., Wee, L.K., Bhateja, V., Rajesh, T.M. (eds.) Computer Communication, Networking and IoT. Lecture Notes in Networks and Systems, vol. 459. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-1976-3_18

  116. Xia, Q., et al.: BBDS: Blockchain-based data sharing for electronic medical records in cloud environments. Information 8(2), 44 (2017)

    Google Scholar 

  117. Zhang, A., Lin, X.: Towards secure and privacy-preserving data sharing in e-health systems via consortium blockchain. J. Med. Syst. 42(8), 1–18 (2018)

    Article  Google Scholar 

  118. Firdaus, A., et al.: Root exploit detection and features optimization: mobile device and blockchain based medical data management. J. Med. Syst. 42(6), 1–23 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saxena, R., Arora, D., Nagar, V., Mahapatra, S. (2023). Blockchain in Healthcare: A Review. In: Panda, S.K., Mishra, V., Dash, S.P., Pani, A.K. (eds) Recent Advances in Blockchain Technology. Intelligent Systems Reference Library, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-031-22835-3_8

Download citation

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy