Skip to main content

A Robust BKSVD Method for Blind Color Deconvolution and Blood Detection on H &E Histological Images

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2023)

Abstract

Hematoxylin and Eosin (H &E) color variation between histological images from different laboratories degrades the performance of Computer-Aided Diagnosis systems. Histology-specific models to solve color variation are designed taking into account the staining procedure, where most color variations are introduced. In particular, Blind Color Deconvolution (BCD) methods aim to identify the real underlying colors in the image and to separate the tissue structure from the color information. A commonly used assumption is that images are stained with and only with the pure staining colors (e.g., blue and pink for H &E). However, this assumption does not hold true in the presence of common artifacts such as blood, where the blood cells need a third color component to be represented. Blood usually hampers the ability of color standardization algorithms to correctly identify the stains in the image, producing unexpected outputs. In this work, we propose a robust Bayesian K-Singular Value Decomposition (BKSVD) model to simultaneously detect blood and separate color from structure in histological images. Our method was tested on synthetic and real images containing different amounts of blood pixels.

This work has been supported by project B-TIC-324-UGR20 FEDER/Junta de Andalucía and Universidad de Granada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The code will be made available at https://github.com/vipgugr/.

References

  1. Alsubaie, N., et al.: Stain deconvolution using statistical analysis of multi-resolution stain colour representation. PLoS ONE 12, e0169875 (2017)

    Article  Google Scholar 

  2. Anghel, A., et al.: A high-performance system for robust stain normalization of whole-slide images in histopathology. Front. Med. 6, 193 (2019)

    Google Scholar 

  3. Bukenya, F., et al.: An automated method for segmentation and quantification of blood vessels in histology images. Microvas. Res. 128, 103928 (2020)

    Article  Google Scholar 

  4. Chen, Z., et al.: Histological quantitation of brain injury using whole slide imaging: a pilot validation study in mice. PLOS ONE 9(3), 1–10 (2014)

    Google Scholar 

  5. Hidalgo-Gavira, N., Mateos, J., Vega, M., Molina, R., Katsaggelos, A.K.: Variational Bayesian blind color deconvolution of histopathological images. IEEE Trans. Image Process. 29(1), 2026–2036 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kanwal, N., Pérez-Bueno, F., Schmidt, A., Molina, R., Engan, K.: The devil is in the details: Whole slide image acquisition and processing for artifacts detection, color variation, and data augmentation. A review. IEEE Access, p. 1 (2022)

    Google Scholar 

  7. Kim, N.T., et al.: An original approach for quantification of blood vessels on the whole tumour section. Anal. Cell. Pathol. 25(2), 63–75 (2003)

    Article  Google Scholar 

  8. Macenko, M., et al.: A method for normalizing histology slides for quantitative analysis. In: International Symposium on Biomedical Imaging (ISBI), pp. 1107–1110 (2009)

    Google Scholar 

  9. Morales, S., Engan, K., Naranjo, V.: Artificial intelligence in computational pathology - challenges and future directions. Digit. Sig. Process 119, 103196 (2021)

    Google Scholar 

  10. Mosaliganti, K., et al.: An imaging workflow for characterizing phenotypical change in large histological mouse model datasets. J. Biomed. Inform. 41(6), 863–873 (2008)

    Article  Google Scholar 

  11. Perry, T.S.: Andrew ng x-rays the AI hype. IEEE Spectrum (2021)

    Google Scholar 

  12. Pérez-Bueno, F., Serra, J., Vega, M., Mateos, J., Molina, R., Katsaggelos, A.K.: Bayesian K-SVD for H &E blind color deconvolution. Applications to stain normalization, data augmentation, and cancer classification. Comput. Med. Imaging Graph. 97, 102048 (2022)

    Google Scholar 

  13. Pérez-Bueno, F., López-Pérez, M., Vega, M., Mateos, J., Naranjo, V., Molina, R., et al.: A TV-based image processing framework for blind color deconvolution and classification of histological images. Digit. Signal Process. 101, 102727 (2020)

    Article  Google Scholar 

  14. Pérez-Bueno, F., Vega, M., Sales, M.A., Aneiros-Fernández, J., Naranjo, V., Molina, R., Katsaggelos, A.K.: Blind color deconvolution, normalization, and classification of histological images using general super gaussian priors and Bayesian inference. Comput. Meth. Prog. Bio. 211, 106453 (2021)

    Article  Google Scholar 

  15. Ruifrok, A.C., Johnston, D.A.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23, 291–299 (2001)

    Google Scholar 

  16. Sertel, O., et al.: Texture classification using nonlinear color quantization: application to histopathological image analysis. In: 2008 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 597–600 (2008)

    Google Scholar 

  17. Swiderska-Chadaj, Z., et al.: Automatic quantification of vessels in hemorrhoids whole slide images. In: International Conference on Computational Problems of Electrical Engineering (CPEE), pp. 1–4 (2016)

    Google Scholar 

  18. Tellez, D., et al.: Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Med. Image Anal. 58, 101544 (2019)

    Article  Google Scholar 

  19. Vahadane, A., et al.: Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imag. 35, 1962–1971 (2016)

    Article  Google Scholar 

  20. Wetteland, R., Engan, K., et al.: A multiscale approach for whole-slide image segmentation of five tissue classes in urothelial carcinoma slides. Technol. Cancer Res. Treat. 19, 153303382094678 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Pérez-Bueno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pérez-Bueno, F., Engan, K., Molina, R. (2023). A Robust BKSVD Method for Blind Color Deconvolution and Blood Detection on H &E Histological Images. In: Juarez, J.M., Marcos, M., Stiglic, G., Tucker, A. (eds) Artificial Intelligence in Medicine. AIME 2023. Lecture Notes in Computer Science(), vol 13897. Springer, Cham. https://doi.org/10.1007/978-3-031-34344-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34344-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34343-8

  • Online ISBN: 978-3-031-34344-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy