Abstract
The main goal of diversity optimization is to find a diverse set of solutions which satisfy some lower bound on their fitness. Evolutionary algorithms (EAs) are often used for such tasks, since they are naturally designed to optimize populations of solutions. This approach to diversity optimization, called EDO, has been previously studied from theoretical perspective, but most studies considered only EAs with a trivial offspring population such as the \((\mu + 1)\) EA. In this paper we give an example instance of a k-vertex cover problem, which highlights a critical difference of the diversity optimization from the regular single-objective optimization, namely that there might be a locally optimal population from which we can escape only by replacing at least two individuals at once, which the \((\mu + 1)\) algorithms cannot do.
We also show that the \((\mu + \lambda )\) EA with \(\lambda \ge \mu \) can effectively find a diverse population on k-vertex cover, if using a mutation operator inspired by Branson and Sutton (TCS 2023). To avoid the problem of subset selection which arises in the \((\mu + \lambda )\) EA when it optimizes diversity, we also propose the \((1_\mu + 1_\mu )\) EA\(_D\), which is an analogue of the \((1 + 1)\) EA for populations, and which is also efficient at optimizing diversity on the k-vertex cover problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
As in the vast majority of theoretical studies, we focus on estimating the number of iterations rather than the wall-clock time.
- 2.
For more information about fixed-target analysis and notation see [7].
References
Antipov, D., Buzdalov, M., Doerr, B.: Fast mutation in crossover-based algorithms. Algorithmica 84(6), 1724–1761 (2022)
Antipov, D., Neumann, A., Neumann, F.: Rigorous runtime analysis of diversity optimization with GSEMO on OneMinMax. In: Foundations of Genetic Algorithms, FOGA 2023, pp. 3–14. ACM (2023)
Baste, J., et al.: Diversity of solutions: an exploration through the lens of fixed-parameter tractability theory. Artif. Intell. 303, 103644 (2022)
Benke, L., Miller, T., Papasimeon, M., Lipovetzky, N.: Diverse, top-k, and top-quality planning over simulators. In: ECAI. Frontiers in Artificial Intelligence and Applications, vol. 372, pp. 231–238. IOS Press (2023)
Bossek, J., Neumann, F.: Evolutionary diversity optimization and the minimum spanning tree problem. In: Genetic and Evolutionary Computation Conference, GECCO 2021, pp. 198–206. ACM (2021)
Branson, L., Sutton, A.M.: Focused jump-and-repair constraint handling for fixed-parameter tractable graph problems closed under induced subgraphs. Theor. Comput. Sci. 951, 113719 (2023)
Buzdalov, M., Doerr, B., Doerr, C., Vinokurov, D.: Fixed-target runtime analysis. Algorithmica 84(6), 1762–1793 (2022)
Chatzilygeroudis, K., Cully, A., Vassiliades, V., Mouret, J.-B.: Quality-diversity optimization: a novel branch of stochastic optimization. In: Pardalos, P.M., Rasskazova, V., Vrahatis, M.N. (eds.) Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. SOIA, vol. 170, pp. 109–135. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66515-9_4
Cully, A., Mouret, J.: Behavioral repertoire learning in robotics. In: Genetic and Evolutionary Computation Conference, 2013, pp. 175–182. ACM (2013)
Do, A.V., Guo, M., Neumann, A., Neumann, F.: Analysis of evolutionary diversity optimization for permutation problems. ACM Trans. Evol. Learn. Optim. 2(3), 11:1–11:27 (2022)
Do, A.V., Guo, M., Neumann, A., Neumann, F.: Diverse approximations for monotone submodular maximization problems with a matroid constraint. In: International Joint Conference on Artificial Intelligence, IJCAI 2023, pp. 5558–5566. ijcai.org (2023)
Doerr, B., Gao, W., Neumann, F.: Runtime analysis of evolutionary diversity maximization for OneMinMax. In: Genetic and Evolutionary Computation Conference, GECCO 2016, pp. 557–564. ACM (2016)
Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Analyses of simple hybrid algorithms for the vertex cover problem. Evol. Comput. 17(1), 3–19 (2009)
Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating covering problems by randomized search heuristics using multi-objective models. Evol. Comput. 18(4), 617–633 (2010)
Gao, W., Neumann, F.: Runtime analysis for maximizing population diversity in single-objective optimization. In: Genetic and Evolutionary Computation Conference, GECCO 2014, pp. 777–784. ACM (2014)
Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective optimisation. Evol. Comput. 18(3), 335–356 (2010)
Gounder, S., Neumann, F., Neumann, A.: Evolutionary diversity optimisation for sparse directed communication networks. In: Genetic and Evolutionary Computation Conference, GECCO 2024. ACM (2024, to appear)
Gravina, D., Khalifa, A., Liapis, A., Togelius, J., Yannakakis, G.N.: Procedural content generation throuertegh quality diversity. In: IEEE Conference on Games, CoG 2019, pp. 1–8. IEEE (2019)
Haessler, R.W., Sweeney, P.E.: Cutting stock problems and solution procedures. Eur. J. Oper. Res. 54, 141–150 (1991)
Ingmar, L., de la Banda, M.G., Stuckey, P.J., Tack, G.: Modelling diversity of solutions. In: AAAI Conference on Artificial Intelligence, AAAI 2020, pp. 1528–1535. AAAI Press (2020)
Katz, M., Sohrabi, S.: Reshaping diverse planning. In: AAAI Conference on Artificial Intelligence, AAAI 2020, pp. 9892–9899. AAAI Press (2020)
Kellerhals, L., Renken, M., Zschoche, P.: Parameterized algorithms for diverse multistage problems. In: ESA. LIPIcs, vol. 204, pp. 55:1–55:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)
Kratsch, S., Neumann, F.: Fixed-parameter evolutionary algorithms and the vertex cover problem. Algorithmica 65(4), 754–771 (2013)
Macedo, J., Lopes, D., Correia, J., Machado, P., Costa, E.: Evolving visually-diverse graphic design posters. In: Johnson, C., Rebelo, S.M., Santos, I. (eds.) EvoMUSART 2024. LNCS, vol. 14633, pp. 265–278. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-56992-0_17
Medina, A., Richey, M., Mueller, M., Schrum, J.: Evolving flying machines in minecraft using quality diversity. In: Genetic and Evolutionary Computation Conference, GECCO 2023, pp. 1418–1426 (2023)
Mkhatshwa, S., Nitschke, G.: The impact of morphological diversity in robot swarms. In: Genetic and Evolutionary Computation Conference, GECCO 2023, pp. 65–74 (2023)
Mouret, J., Clune, J.: Illuminating search spaces by mapping elites. CoRR abs/1504.04909 (2015)
Neumann, A., Bossek, J., Neumann, F.: Diversifying greedy sampling and evolutionary diversity optimisation for constrained monotone submodular functions. In: Genetic and Evolutionary Computation Conference, GECCO 2021, pp. 261–269. ACM (2021)
Neumann, A., et al.: Diversity optimization for the detection and concealment of spatially defined communication networks. In: Genetic and Evolutionary Computation Conference, GECCO 2023, pp. 1436–1444. ACM (2023)
Nikfarjam, A., Bossek, J., Neumann, A., Neumann, F.: Entropy-based evolutionary diversity optimisation for the traveling salesperson problem. In: Genetic and Evolutionary Computation Conference, GECCO 2021, pp. 600–608. ACM (2021)
Nikfarjam, A., Neumann, A., Neumann, F.: Evolutionary diversity optimisation for the traveling thief problem. In: Genetic and Evolutionary Computation Conference, GECCO 2022, pp. 749–756. ACM (2022)
Nikfarjam, A., Neumann, A., Neumann, F.: On the use of quality diversity algorithms for the traveling thief problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 260–268 (2022)
Nikfarjam, A., Rothenberger, R., Neumann, F., Friedrich, T.: Evolutionary diversity optimisation in constructing satisfying assignments. In: Genetic and Evolutionary Computation Conference, GECCO 2023, pp. 938–945. ACM (2023)
Nikfarjam, A., Stanford, T., Neumann, A., Dumuid, D., Neumann, F.: Quality diversity approaches for time use optimisation to improve health outcomes. In: Genetic and Evolutionary Computation Conference, GECCO 2024. ACM (2024, to appear)
Oliveto, P.S., He, J., Yao, X.: Evolutionary algorithms and the vertex cover problem. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 1870–1877. IEEE (2007)
Oliveto, P.S., He, J., Yao, X.: Analysis of population-based evolutionary algorithms for the vertex cover problem. In: IEEE Congress on Evolutionary Computation, CEC 2008, pp. 1563–1570. IEEE (2008)
Pugh, J.K., Soros, L.B., Szerlip, P.A., Stanley, K.O.: Confronting the challenge of quality diversity. In: Genetic and Evolutionary Computation Conference, GECCO 2015, pp. 967–974. ACM (2015)
Ulrich, T., Thiele, L.: Maximizing population diversity in single-objective optimization. In: Genetic and Evolutionary Computation Conference, GECCO 2011, pp. 641–648. ACM (2011)
Wineberg, M., Oppacher, F.: The underlying similarity of diversity measures used in evolutionary computation. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1493–1504. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45110-2_21
Zardini, E., Zappetti, D., Zambrano, D., Iacca, G., Floreano, D.: Seeking quality diversity in evolutionary co-design of morphology and control of soft tensegrity modular robots. In: Genetic and Evolutionary Computation Conference, GECCO 2021, pp. 189–197. ACM (2021)
Acknowledgements
This work has been supported by the Australian Research Council through grants DP190103894 and FT200100536.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Antipov, D., Neumann, A., Neumann, F. (2024). Local Optima in Diversity Optimization: Non-trivial Offspring Population is Essential. In: Affenzeller, M., et al. Parallel Problem Solving from Nature – PPSN XVIII. PPSN 2024. Lecture Notes in Computer Science, vol 15150. Springer, Cham. https://doi.org/10.1007/978-3-031-70071-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-70071-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70070-5
Online ISBN: 978-3-031-70071-2
eBook Packages: Computer ScienceComputer Science (R0)