Skip to main content

Local Optima in Diversity Optimization: Non-trivial Offspring Population is Essential

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVIII (PPSN 2024)

Abstract

The main goal of diversity optimization is to find a diverse set of solutions which satisfy some lower bound on their fitness. Evolutionary algorithms (EAs) are often used for such tasks, since they are naturally designed to optimize populations of solutions. This approach to diversity optimization, called EDO, has been previously studied from theoretical perspective, but most studies considered only EAs with a trivial offspring population such as the \((\mu + 1)\) EA. In this paper we give an example instance of a k-vertex cover problem, which highlights a critical difference of the diversity optimization from the regular single-objective optimization, namely that there might be a locally optimal population from which we can escape only by replacing at least two individuals at once, which the \((\mu + 1)\) algorithms cannot do.

We also show that the \((\mu + \lambda )\) EA with \(\lambda \ge \mu \) can effectively find a diverse population on k-vertex cover, if using a mutation operator inspired by Branson and Sutton (TCS 2023). To avoid the problem of subset selection which arises in the \((\mu + \lambda )\) EA when it optimizes diversity, we also propose the \((1_\mu + 1_\mu )\) EA\(_D\), which is an analogue of the \((1 + 1)\) EA for populations, and which is also efficient at optimizing diversity on the k-vertex cover problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As in the vast majority of theoretical studies, we focus on estimating the number of iterations rather than the wall-clock time.

  2. 2.

    For more information about fixed-target analysis and notation see [7].

References

  1. Antipov, D., Buzdalov, M., Doerr, B.: Fast mutation in crossover-based algorithms. Algorithmica 84(6), 1724–1761 (2022)

    Article  MathSciNet  Google Scholar 

  2. Antipov, D., Neumann, A., Neumann, F.: Rigorous runtime analysis of diversity optimization with GSEMO on OneMinMax. In: Foundations of Genetic Algorithms, FOGA 2023, pp. 3–14. ACM (2023)

    Google Scholar 

  3. Baste, J., et al.: Diversity of solutions: an exploration through the lens of fixed-parameter tractability theory. Artif. Intell. 303, 103644 (2022)

    Article  MathSciNet  Google Scholar 

  4. Benke, L., Miller, T., Papasimeon, M., Lipovetzky, N.: Diverse, top-k, and top-quality planning over simulators. In: ECAI. Frontiers in Artificial Intelligence and Applications, vol. 372, pp. 231–238. IOS Press (2023)

    Google Scholar 

  5. Bossek, J., Neumann, F.: Evolutionary diversity optimization and the minimum spanning tree problem. In: Genetic and Evolutionary Computation Conference, GECCO 2021, pp. 198–206. ACM (2021)

    Google Scholar 

  6. Branson, L., Sutton, A.M.: Focused jump-and-repair constraint handling for fixed-parameter tractable graph problems closed under induced subgraphs. Theor. Comput. Sci. 951, 113719 (2023)

    Article  MathSciNet  Google Scholar 

  7. Buzdalov, M., Doerr, B., Doerr, C., Vinokurov, D.: Fixed-target runtime analysis. Algorithmica 84(6), 1762–1793 (2022)

    Article  MathSciNet  Google Scholar 

  8. Chatzilygeroudis, K., Cully, A., Vassiliades, V., Mouret, J.-B.: Quality-diversity optimization: a novel branch of stochastic optimization. In: Pardalos, P.M., Rasskazova, V., Vrahatis, M.N. (eds.) Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. SOIA, vol. 170, pp. 109–135. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66515-9_4

    Chapter  Google Scholar 

  9. Cully, A., Mouret, J.: Behavioral repertoire learning in robotics. In: Genetic and Evolutionary Computation Conference, 2013, pp. 175–182. ACM (2013)

    Google Scholar 

  10. Do, A.V., Guo, M., Neumann, A., Neumann, F.: Analysis of evolutionary diversity optimization for permutation problems. ACM Trans. Evol. Learn. Optim. 2(3), 11:1–11:27 (2022)

    Google Scholar 

  11. Do, A.V., Guo, M., Neumann, A., Neumann, F.: Diverse approximations for monotone submodular maximization problems with a matroid constraint. In: International Joint Conference on Artificial Intelligence, IJCAI 2023, pp. 5558–5566. ijcai.org (2023)

    Google Scholar 

  12. Doerr, B., Gao, W., Neumann, F.: Runtime analysis of evolutionary diversity maximization for OneMinMax. In: Genetic and Evolutionary Computation Conference, GECCO 2016, pp. 557–564. ACM (2016)

    Google Scholar 

  13. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Analyses of simple hybrid algorithms for the vertex cover problem. Evol. Comput. 17(1), 3–19 (2009)

    Article  Google Scholar 

  14. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating covering problems by randomized search heuristics using multi-objective models. Evol. Comput. 18(4), 617–633 (2010)

    Article  Google Scholar 

  15. Gao, W., Neumann, F.: Runtime analysis for maximizing population diversity in single-objective optimization. In: Genetic and Evolutionary Computation Conference, GECCO 2014, pp. 777–784. ACM (2014)

    Google Scholar 

  16. Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective optimisation. Evol. Comput. 18(3), 335–356 (2010)

    Article  Google Scholar 

  17. Gounder, S., Neumann, F., Neumann, A.: Evolutionary diversity optimisation for sparse directed communication networks. In: Genetic and Evolutionary Computation Conference, GECCO 2024. ACM (2024, to appear)

    Google Scholar 

  18. Gravina, D., Khalifa, A., Liapis, A., Togelius, J., Yannakakis, G.N.: Procedural content generation throuertegh quality diversity. In: IEEE Conference on Games, CoG 2019, pp. 1–8. IEEE (2019)

    Google Scholar 

  19. Haessler, R.W., Sweeney, P.E.: Cutting stock problems and solution procedures. Eur. J. Oper. Res. 54, 141–150 (1991)

    Article  Google Scholar 

  20. Ingmar, L., de la Banda, M.G., Stuckey, P.J., Tack, G.: Modelling diversity of solutions. In: AAAI Conference on Artificial Intelligence, AAAI 2020, pp. 1528–1535. AAAI Press (2020)

    Google Scholar 

  21. Katz, M., Sohrabi, S.: Reshaping diverse planning. In: AAAI Conference on Artificial Intelligence, AAAI 2020, pp. 9892–9899. AAAI Press (2020)

    Google Scholar 

  22. Kellerhals, L., Renken, M., Zschoche, P.: Parameterized algorithms for diverse multistage problems. In: ESA. LIPIcs, vol. 204, pp. 55:1–55:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

    Google Scholar 

  23. Kratsch, S., Neumann, F.: Fixed-parameter evolutionary algorithms and the vertex cover problem. Algorithmica 65(4), 754–771 (2013)

    Article  MathSciNet  Google Scholar 

  24. Macedo, J., Lopes, D., Correia, J., Machado, P., Costa, E.: Evolving visually-diverse graphic design posters. In: Johnson, C., Rebelo, S.M., Santos, I. (eds.) EvoMUSART 2024. LNCS, vol. 14633, pp. 265–278. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-56992-0_17

    Chapter  Google Scholar 

  25. Medina, A., Richey, M., Mueller, M., Schrum, J.: Evolving flying machines in minecraft using quality diversity. In: Genetic and Evolutionary Computation Conference, GECCO 2023, pp. 1418–1426 (2023)

    Google Scholar 

  26. Mkhatshwa, S., Nitschke, G.: The impact of morphological diversity in robot swarms. In: Genetic and Evolutionary Computation Conference, GECCO 2023, pp. 65–74 (2023)

    Google Scholar 

  27. Mouret, J., Clune, J.: Illuminating search spaces by mapping elites. CoRR abs/1504.04909 (2015)

    Google Scholar 

  28. Neumann, A., Bossek, J., Neumann, F.: Diversifying greedy sampling and evolutionary diversity optimisation for constrained monotone submodular functions. In: Genetic and Evolutionary Computation Conference, GECCO 2021, pp. 261–269. ACM (2021)

    Google Scholar 

  29. Neumann, A., et al.: Diversity optimization for the detection and concealment of spatially defined communication networks. In: Genetic and Evolutionary Computation Conference, GECCO 2023, pp. 1436–1444. ACM (2023)

    Google Scholar 

  30. Nikfarjam, A., Bossek, J., Neumann, A., Neumann, F.: Entropy-based evolutionary diversity optimisation for the traveling salesperson problem. In: Genetic and Evolutionary Computation Conference, GECCO 2021, pp. 600–608. ACM (2021)

    Google Scholar 

  31. Nikfarjam, A., Neumann, A., Neumann, F.: Evolutionary diversity optimisation for the traveling thief problem. In: Genetic and Evolutionary Computation Conference, GECCO 2022, pp. 749–756. ACM (2022)

    Google Scholar 

  32. Nikfarjam, A., Neumann, A., Neumann, F.: On the use of quality diversity algorithms for the traveling thief problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 260–268 (2022)

    Google Scholar 

  33. Nikfarjam, A., Rothenberger, R., Neumann, F., Friedrich, T.: Evolutionary diversity optimisation in constructing satisfying assignments. In: Genetic and Evolutionary Computation Conference, GECCO 2023, pp. 938–945. ACM (2023)

    Google Scholar 

  34. Nikfarjam, A., Stanford, T., Neumann, A., Dumuid, D., Neumann, F.: Quality diversity approaches for time use optimisation to improve health outcomes. In: Genetic and Evolutionary Computation Conference, GECCO 2024. ACM (2024, to appear)

    Google Scholar 

  35. Oliveto, P.S., He, J., Yao, X.: Evolutionary algorithms and the vertex cover problem. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 1870–1877. IEEE (2007)

    Google Scholar 

  36. Oliveto, P.S., He, J., Yao, X.: Analysis of population-based evolutionary algorithms for the vertex cover problem. In: IEEE Congress on Evolutionary Computation, CEC 2008, pp. 1563–1570. IEEE (2008)

    Google Scholar 

  37. Pugh, J.K., Soros, L.B., Szerlip, P.A., Stanley, K.O.: Confronting the challenge of quality diversity. In: Genetic and Evolutionary Computation Conference, GECCO 2015, pp. 967–974. ACM (2015)

    Google Scholar 

  38. Ulrich, T., Thiele, L.: Maximizing population diversity in single-objective optimization. In: Genetic and Evolutionary Computation Conference, GECCO 2011, pp. 641–648. ACM (2011)

    Google Scholar 

  39. Wineberg, M., Oppacher, F.: The underlying similarity of diversity measures used in evolutionary computation. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1493–1504. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45110-2_21

    Chapter  Google Scholar 

  40. Zardini, E., Zappetti, D., Zambrano, D., Iacca, G., Floreano, D.: Seeking quality diversity in evolutionary co-design of morphology and control of soft tensegrity modular robots. In: Genetic and Evolutionary Computation Conference, GECCO 2021, pp. 189–197. ACM (2021)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Australian Research Council through grants DP190103894 and FT200100536.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Antipov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antipov, D., Neumann, A., Neumann, F. (2024). Local Optima in Diversity Optimization: Non-trivial Offspring Population is Essential. In: Affenzeller, M., et al. Parallel Problem Solving from Nature – PPSN XVIII. PPSN 2024. Lecture Notes in Computer Science, vol 15150. Springer, Cham. https://doi.org/10.1007/978-3-031-70071-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70071-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70070-5

  • Online ISBN: 978-3-031-70071-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy