Abstract
The electronic writing tools, while enhancing convenience, sacrifice the readability and efficiency of handwritten content. Balancing high efficiency with readable handwriting poses a challenging research task. In this paper, we propose a method sequence-based models to beautify user handwritten traces. Unlike most existing methods that treat Chinese handwriting as images and cannot reflect the human writing process, we capture individual writing characteristics from a small amount of user handwriting trajectories and beautify the user’s traces by mimicking their writing style and process. We fully consider the style of radicals and components between the content and reference glyphs, assigning appropriate fine-grained styles to strokes in the content glyphs through a cross-attention mechanism module. Additionally, we find that many style features contribute minimally to the final stylized results. Therefore, we decompose the style features into the Cartesian product of single-dimensional variable sets, effectively removing redundant features with limited impact on the stylization effect while preserving key style information. Qualitative and quantitative experiments both demonstrate the superiority of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aksan, E., Pece, F., Hilliges, O.: Deepwriting: making digital ink editable via deep generative modeling. In: CHI, pp. 1–14. ACM (2018). https://doi.org/10.1145/3173574.3173779
Bhattarai, B., Kim, T.-K.: Inducing optimal attribute representations for conditional GANs. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 69–85. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_5
Chen, Z., et al.: Complex handwriting trajectory recovery: evaluation metrics and algorithm. In: Wang, L., Gall, J., Chin, T.J., Sato, I., Chellappa, R. (eds.) ACCV 2022. LNCS, vol. 13842, pp. 1060–1076. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-26284-5_4
Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: Stargan v2: diverse image synthesis for multiple domains. In: CVPR, pp. 8185–8194. IEEE (2020). https://doi.org/10.1109/CVPR42600.2020.00821
Dai, G., et al.: Disentangling writer and character styles for handwriting generation. In: CVPR, pp. 5977–5986. IEEE (2023). https://doi.org/10.1109/cvpr52729.2023.00579
Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S., Litman, R.: Scrabblegan: semi-supervised varying length handwritten text generation. In: CVPR, pp. 4324–4333. IEEE (2020). https://doi.org/10.1109/cvpr42600.2020.00438
Gan, J., Wang, W.: HIGAN: handwriting imitation conditioned on arbitrary-length texts and disentangled styles. In: AAAI, pp. 7484–7492. AAAI Press (2021). https://doi.org/10.1609/aaai.v35i9.16917
Gao, Y., Wu, J.: Gan-based unpaired Chinese character image translation via skeleton transformation and stroke rendering. In: AAAI, pp. 646–653. AAAI Press (2020). https://doi.org/10.1609/aaai.v34i01.5405
Gao, Y., Guo, Y., Lian, Z., Tang, Y., Xiao, J.: Artistic glyph image synthesis via one-stage few-shot learning. ACM Trans. Graph. 38(6), 1–12 (2019). https://doi.org/10.1145/3355089.3356574
Graves, A., Graves, A.: Long short-term memory. Supervised sequence labelling with recurrent neural networks, pp. 37–45 (2012)
Hassan, A.U., Ahmed, H., Choi, J.: Unpaired font family synthesis using conditional generative adversarial networks. Knowl. Based Syst. 229, 107304 (2021). https://doi.org/10.1016/j.knosys.2021.107304
Jeong, S., Kim, Y., Lee, E., Sohn, K.: Memory-guided unsupervised image-to-image translation. In: CVPR, pp. 6554–6563. IEEE (2021). https://doi.org/10.1109/CVPR46437.2021.00649
Jiang, L., Zhang, C., Huang, M., Liu, C., Shi, J., Loy, C.C.: TSIT: a simple and versatile framework for image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 206–222. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_13
Jiang, Y., Lian, Z., Tang, Y., Xiao, J.: Scfont: structure-guided Chinese font generation via deep stacked networks. In: AAAI, pp. 4015–4022. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.33014015
Kotani, A., Tellex, S., Tompkin, J.: Generating handwriting via decoupled style descriptors. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 764–780. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_45
Li, T.M., Lukáč, M., Gharbi, M., Ragan-Kelley, J.: Differentiable vector graphics rasterization for editing and learning. TOG 39(6), 1–15 (2020). https://doi.org/10.1145/3414685.3417871
Liu, C.L., Yin, F., Wang, D.H., Wang, Q.F.: Casia online and offline Chinese handwriting databases. In: ICDAR, pp. 37–41. IEEE (2011). https://doi.org/10.1109/icdar.2011.17
Liu, X., Meng, G., Chang, J., Hu, R., Xiang, S., Pan, C.: Decoupled representation learning for character glyph synthesis. IEEE Trans. Multimedia 24, 1787–1799 (2021). https://doi.org/10.1109/tmm.2021.3072449
Liu, Y.T., Zhang, Z., Guo, Y.C., Fisher, M., Wang, Z., Zhang, S.H.: Dualvector: unsupervised vector font synthesis with dual-part representation. In: CVPR, pp. 14193–14202. IEEE (2023). https://doi.org/10.1109/cvpr52729.2023.01364
Liu, Y., binti Khalid, F., binti Mustaffa, M.R., bin Azman, A.: Dual-modality learning and transformer-based approach for high-quality vector font generation. Expert Syst. Appl. 240, 122405 (2024). https://doi.org/10.1016/j.eswa.2023.122405
Liu, Y., binti Khalid, F., Wang, C., binti Mustaffa, M.R., bin Azman, A.: An end-to-end chinese font generation network with stroke semantics and deformable attention skip-connection. Expert Syst. Appl. 237, 121407 (2024). https://doi.org/10.1016/j.eswa.2023.121407
Matsumoto, K., Fukushima, T., Nakagawa, M.: Collection and analysis of on-line handwritten Japanese character patterns. In: Proceedings of Sixth International Conference on Document Analysis and Recognition, pp. 496–500. IEEE (2001). https://doi.org/10.1109/ICDAR.2001.953839
Pan, W., Zhu, A., Zhou, X., Iwana, B.K., Li, S.: Few shot font generation via transferring similarity guided global style and quantization local style. In: ICCV, pp. 19506–19516 (2023). https://doi.org/10.1109/iccv51070.2023.01787
Park, S., Chun, S., Cha, J., Lee, B., Shim, H.: Few-shot font generation with localized style representations and factorization. In: AAAI, pp. 2393–2402. AAAI Press (2021). https://doi.org/10.1609/aaai.v35i3.16340
Pippi, V., Cascianelli, S., Cucchiara, R.: Handwritten text generation from visual archetypes. In: CVPR, pp. 22458–22467. IEEE (2023). https://doi.org/10.1109/cvpr52729.2023.02151
Reddy, P., Gharbi, M., Lukac, M., Mitra, N.J.: Im2vec: synthesizing vector graphics without vector supervision. In: CVPRW, pp. 7342–7351. IEEE (2021). https://doi.org/10.1109/cvprw53098.2021.00241
Richardson, E., et al.: Encoding in style: a stylegan encoder for image-to-image translation. In: CVPR, pp. 2287–2296. IEEE (2021). https://doi.org/10.1109/CVPR46437.2021.00232
Sumi, T., Iwana, B.K., Hayashi, H., Uchida, S.: Modality conversion of handwritten patterns by cross variational autoencoders. In: ICDAR, pp. 407–412. IEEE (2019). https://doi.org/10.1109/icdar.2019.00072
Tang, L., et al.: Few-shot font generation by learning fine-grained local styles. In: CVPR, pp. 7895–7904. IEEE (2022). https://doi.org/10.1109/cvpr52688.2022.00774
Tang, S., Lian, Z.: Write like you: synthesizing your cursive online Chinese handwriting via metric-based meta learning. Comput. Graph. Forum 40(2), 141–151 (2021). https://doi.org/10.1111/cgf.142621
Tang, S., Xia, Z., Lian, Z., Tang, Y., Xiao, J.: FontRNN: generating large-scale Chinese fonts via recurrent neural network. Comput. Graph. Forum 38(7), 567–577 (2019). https://doi.org/10.1111/cgf.13861
Vaswani, A., et al.: Attention is all you need. In: NeurIPS, vol. 30 (2017)
Wang, C., Zhou, M., Ge, T., Jiang, Y., Bao, H., Xu, W.: Cf-font: content fusion for few-shot font generation. In: CVPR, pp. 1858–1867. IEEE (2023). https://doi.org/10.1109/CVPR52729.2023.00185
Wang, Y., Lian, Z.: Deepvecfont: synthesizing high-quality vector fonts via dual-modality learning. TOG 40(6), 1–15 (2021). https://doi.org/10.1145/3478513.3480488
Wang, Y., Wang, Y., Yu, L., Zhu, Y., Lian, Z.: Deepvecfont-v2: exploiting transformers to synthesize vector fonts with higher quality. In: CVPR, pp. 18320–18328. IEEE (2023). https://doi.org/10.1109/cvpr52729.2023.01757
Wen, C., et al.: Handwritten Chinese font generation with collaborative stroke refinement. In: WACV, pp. 3882–3891. IEEE (2021). https://doi.org/10.1109/WACV48630.2021.00393
Wen, Q., Li, S., Han, B., Yuan, Y.: Zigan: Fine-grained Chinese calligraphy font generation via a few-shot style transfer approach. In: ACMMM, pp. 621–629. ACM (2021). https://doi.org/10.1145/3474085.3475225
Xie, Y., Chen, X., Sun, L., Lu, Y.: Dg-font: deformable generative networks for unsupervised font generation. In: CVPR, pp. 735–751. IEEE (2021). https://doi.org/10.1109/cvpr46437.2021.00509
Yu, L., et al.: Magvit: masked generative video transformer. In: CVPR, pp. 10459–10469 (2023). https://doi.org/10.1109/cvpr52729.2023.01008
Yu, L., et al.: Language model beats diffusion–tokenizer is key to visual generation. arXiv preprint arXiv:2310.05737 (2023). https://doi.org/10.48550/arXiv.2310.05737
Zeng, J., Chen, Q., Liu, Y., Wang, M., Yao, Y.: Strokegan: reducing mode collapse in chinese font generation via stroke encoding. In: AAAI, pp. 3270–3277 (2021). https://doi.org/10.1609/aaai.v35i4.16438
Zeng, S., Pan, Z.: An unsupervised font style transfer model based on generative adversarial networks. Multimedia Tools Appl. 81(4), 5305–5324 (2022). https://doi.org/10.1007/s11042-021-11777-0
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR, pp. 586–595. IEEE (2018)
Zhang, X.Y., Yin, F., Zhang, Y.M., Liu, C.L., Bengio, Y.: Drawing and recognizing Chinese characters with recurrent neural network. PAMI 40(4), 849–862 (2017). https://doi.org/10.1109/tpami.2017.2695539
Zhang, Y., Zhang, Y., Cai, W.: Separating style and content for generalized style transfer. In: CVPR, pp. 8447–8455. IEEE (2018). https://doi.org/10.1109/cvpr.2018.00881
Zhao, B., Tao, J., Yang, M., Tian, Z., Fan, C., Bai, Y.: Deep imitator: handwriting calligraphy imitation via deep attention networks. Pattern Recogn. 104, 107080 (2020). https://doi.org/10.1016/j.patcog.2019.107080
Zhu, A., Lu, X., Bai, X., Uchida, S., Iwana, B.K., Xiong, S.: Few-shot text style transfer via deep feature similarity. IEEE Trans. Image Process. 29, 6932–6946 (2020). https://doi.org/10.1109/tip.2020.2995062
Acknowledgements
This research was supported by Dalian Science and Technology Innovation Fund (No.2023JJGX026) and Key Laboratory of Informatization of National Education of Ministry of Education (No.EIN2024B002).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, Y., Khalid, F.B., Wang, L., Zhang, Y., Wang, C. (2025). Elegantly Written: Disentangling Writer and Character Styles for Enhancing Online Chinese Handwriting. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15066. Springer, Cham. https://doi.org/10.1007/978-3-031-73242-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-73242-3_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73241-6
Online ISBN: 978-3-031-73242-3
eBook Packages: Computer ScienceComputer Science (R0)