Abstract
Real-time one-way cellular automata (\({\text {OCA}}\)) are investigated towards their ability to perform reversible computations with regard to formal language recognition. It turns out that the standard model with fixed boundary conditions is quite weak in terms of reversible information processing, since it is shown that in this case exactly the regular languages can be accepted reversibly. We then study a modest extension which allows that information may flow circularly from the leftmost cell into the rightmost cell. It is shown that this extension does not increase the computational power in the general case, but does increase it for reversible computations. On the other hand, the model is less powerful than real-time reversible two-way cellular automata. Additionally, we obtain that the corresponding language class is closed under Boolean operations, and we prove the undecidability of several decidability questions. Finally, it is shown that the reversibility of an arbitrary real-time circular one-way cellular automaton is undecidable as well.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of parallel maps for tesselation structures. J. Comput. System Sci. 6, 448–464 (1972)
Angluin, D.: Inference of reversible languages. J. ACM 29, 741–765 (1982)
Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)
Choffrut, C., Čulik II, K.: On real-time cellular automata and trellis automata. Acta Inform. 21, 393–407 (1984)
Czeizler, E., Kari, J.: A tight linear bound on the neighborhood of inverse cellular automata. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 410–420. Springer, Heidelberg (2005)
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Cambridge (1979)
Kari, J.: Reversibility and surjectivity problems of cellular automata. J. Comput. System Sci. 48, 149–182 (1994)
Kari, J.: Theory of cellular automata: a survey. Theoret. Comput. Sci. 334, 3–33 (2005)
Kutrib, M.: Cellular automata - a computational point of view. In: Bel-Enguix, G., Jiménez-López, M.D., Martín-Vide, C. (eds.) New Developments in Formal Languages and Applications. Studies in Computational Intelligence, vol. 113, pp. 183–227. Springer, Heidelberg (2008)
Kutrib, M.: Cellular automata and language theory. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Science, pp. 800–823. Springer, New York (2009)
Kutrib, M., Malcher, A.: Fast reversible language recognition using cellular automata. Inform. Comput. 206, 1142–1151 (2008)
Kutrib, M., Malcher, A.: Real-time reversible iterative arrays. Theoret. Comput. Sci. 411, 812–822 (2010)
Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. System Sci. 78, 1814–1827 (2012)
Kutrib, M., Malcher, A.: One-way reversible multi-head finite automata. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 14–28. Springer, Heidelberg (2013)
Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)
Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J. Comput. System Sci. 60, 354–367 (2000)
Morita, K.: Reversible computing and cellular automata - a survey. Theoret. Comput. Sci. 395, 101–131 (2008)
Morita, K.: Two-way reversible multi-head finite automata. Fund. Inform. 110, 241–254 (2011)
Pin, J.-C.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 401–416. Springer, Heidelberg (1992)
Umeo, H., Morita, K., Sugata, K.: Deterministic one-way simulation of two-way real-time cellular automata and its related problems. Inform. Process. Lett. 14, 158–161 (1982)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Kutrib, M., Malcher, A., Wendlandt, M. (2015). Real-Time Reversible One-Way Cellular Automata. In: Isokawa, T., Imai, K., Matsui, N., Peper, F., Umeo, H. (eds) Cellular Automata and Discrete Complex Systems. AUTOMATA 2014. Lecture Notes in Computer Science(), vol 8996. Springer, Cham. https://doi.org/10.1007/978-3-319-18812-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-18812-6_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18811-9
Online ISBN: 978-3-319-18812-6
eBook Packages: Computer ScienceComputer Science (R0)