Skip to main content

Video Event Detection Using Kernel Support Vector Machine with Isotropic Gaussian Sample Uncertainty (KSVM-iGSU)

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9516))

Included in the following conference series:

  • 3063 Accesses

Abstract

In this paper, we propose an algorithm that learns from uncertain data and exploits related videos for the problem of event detection; related videos are those that are closely associated, though not fully depicting the event of interest. In particular, two extensions of the linear SVM with Gaussian Sample Uncertainty are presented, which (a) lead to non-linear decision boundaries and (b) incorporate related class samples in the optimization problem. The resulting learning methods are especially useful in problems where only a limited number of positive and related training observations are provided, e.g., for the 10Ex subtask of TRECVID MED, where only ten positive and five related samples are provided for the training of a complex event detector. Experimental results on the TRECVID MED 2014 dataset verify the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\mathbb {S}_{++}^{n}\) denotes the convex cone of all symmetric positive definite \(n\times n\) matrices with entries in \(\mathbb {R}\). \(I_n\) denotes the identity matrix of order n.

  2. 2.

    Convexity can be shown using Theorem 2 proved in [27].

  3. 3.

    Their derivation is omitted, as it is technical but straightforward.

References

  1. Bhattacharyya, C., Pannagadatta, K., Smola, A.J.: A second order cone programming formulation for classifying missing data. In: Neural Information Processing Systems (NIPS), pp. 153–160 (2005)

    Google Scholar 

  2. Bolles, R., Burns, B., Herson, J., et al.: The 2014 SESAME multimedia event detection and recounting system. In: Proceedings of the TRECVID Workshop (2014)

    Google Scholar 

  3. Broyden, C.G.: The convergence of a class of double-rank minimization algorithms 1. general considerations. IMA J. Appl. Math. 6(1), 76–90 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). http://www.csie.ntu.edu.tw/cjlin/libsvm

    Article  Google Scholar 

  5. Cheng, H., Liu, J., Chakraborty, I., Chen, G., Liu, Q., Elhoseiny, M., Gan, G., Divakaran, A., Sawhney, H., Allan, J., Foley, J., Shah, M., Dehghan, A., Witbrock, M., Curtis, J.: SRI-Sarnoff AURORA system at TRECVID 2014 multimedia event detection and recounting. In: Proceedings of the TRECVID Workshop (2014)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Douze, M., Oneata, D., Paulin, M., Leray, C., Chesneau, N., Potapov, D., Verbeek, J., Alahari, K., Harchaoui, Z., Lamel, L., Gauvain, J.L., Schmidt, C.A., Schmid, C.: The INRIA-LIM-VocR and AXES submissions to TRECVID 2014 multimedia event detection (2014)

    Google Scholar 

  8. Gkalelis, N., Markatopoulou, F., Moumtzidou, A., Galanopoulos, D., Avgerinakis, K., Pittaras, N., Vrochidis, S., Mezaris, V., Kompatsiaris, I., Patras, I.: ITI-CERTH participation to TRECVID 2014. In: Proceedings of the TRECVID Workshop (2014)

    Google Scholar 

  9. Gkalelis, N., Mezaris, V.: Video event detection using generalized subclass discriminant analysis and linear support vector machines. In: Proceedings of International Conference on Multimedia Retrieval, p. 25. ACM (2014)

    Google Scholar 

  10. Golub, G.H., Van Loan, C.F.: Matrix Comput., vol. 3. JHU Press, Baltimore (2012)

    Google Scholar 

  11. Guangnan, Y., Dong, L., Shih-Fu, C., Ruslan, S., Vlad, M., Larry, D., Abhinav, G., Ismail, H., Sadiye, G., Ashutosh, M.: BBN VISER TRECVID 2014 multimedia event detection and multimedia event recounting systems. In: Proceedings of the TRECVID Workshop (2014)

    Google Scholar 

  12. Habibian, A., van de Sande, K.E., Snoek, C.G.: Recommendations for video event recognition using concept vocabularies. In: Proceedings of the 3rd ACM Conference on International Conference on Multimedia Retrieval, pp. 89–96. ACM (2013)

    Google Scholar 

  13. Habibian, A., Mensink, T., Snoek, C.G.: Videostory: A new multimedia embedding for few-example recognition and translation of events. In: Proceedings of the ACM International Conference on Multimedia, pp. 17–26. ACM (2014)

    Google Scholar 

  14. Jiang, L., Meng, D., Mitamura, T., Hauptmann, A.G.: Easy samples first: self-paced reranking for zero-example multimedia search. In: Proceedings of the ACM International Conference on Multimedia, pp. 547–556. ACM (2014)

    Google Scholar 

  15. Jiang, L., Yu, S.I., Meng, D., Mitamura, T., Hauptmann, A.G.: Bridging the ultimate semantic gap: a semantic search engine for internet videos. In: ACM International Conference on Multimedia Retrieval (2015)

    Google Scholar 

  16. Jiang, Y.G., Bhattacharya, S., Chang, S.F., Shah, M.: High-level event recognition in unconstrained videos. Int. J. Multimedia Inf. Retrieval 2(2), 73–101 (2013)

    Article  Google Scholar 

  17. Kimeldorf, G., Wahba, G.: Some results on Tchebycheffian spline functions. J. Math. Anal. Appl. 33(1), 82–95 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lanckriet, G.R., Ghaoui, L.E., Bhattacharyya, C., Jordan, M.I.: A robust minimax approach to classification. J. Mach. Learn. Res. 3, 555–582 (2003)

    MATH  MathSciNet  Google Scholar 

  19. Liang, Z., Inoue, N., Shinoda, K.: Event Detection by Velocity Pyramid. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds.) MMM 2014, Part I. LNCS, vol. 8325, pp. 353–364. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  20. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Mathematical prog. 45(1–3), 503–528 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mazloom, M., Habibian, A., Liu, D., Snoek, C.G., Chang, S.F.: Encoding concept prototypes for video event detection and summarization (2015)

    Google Scholar 

  22. Over, P., Awad, G., Michel, M., Fiscus, J., Sanders, G., Kraaij, W., Smeaton, A.F., Quenot, G.: An overview of the goals, tasks, data, evaluation mechanisms and metrics. In: Proceedings of the TRECVID 2014. NIST, USA (2014)

    Google Scholar 

  23. Robertson, S.: A new interpretation of average precision. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 689–690. ACM (2008)

    Google Scholar 

  24. Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In: Helmbold, D.P., Williamson, B. (eds.) COLT 2001 and EuroCOLT 2001. LNCS (LNAI), vol. 2111, pp. 416–426. Springer, Heidelberg (2001)

    Google Scholar 

  25. Shivaswamy, P.K., Bhattacharyya, C., Smola, A.J.: Second order cone programming approaches for handling missing and uncertain data. J. Mach. Learn. Res. 7, 1283–1314 (2006)

    MATH  MathSciNet  Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:1409.1556

  27. Tzelepis, C., Mezaris, V., Patras, I.: Linear maximum margin classifier for learning from uncertain data (2015). arXiv preprint arXiv:1504.03892

  28. Tzelepis, C., Gkalelis, N., Mezaris, V., Kompatsiaris, I.: Improving event detection using related videos and relevance degree support vector machines. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 673–676. ACM (2013)

    Google Scholar 

  29. Xu, H., Caramanis, C., Mannor, S.: Robustness and regularization of support vector machines. J. Mach. Learn. Res. 10, 1485–1510 (2009)

    MATH  MathSciNet  Google Scholar 

  30. Xu, H., Mannor, S.: Robustness and generalization. Mach. Learn. 86(3), 391–423 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yu, S.I., Jiang, L., Mao, Z., Chang, X., Du, X., Gan, C., Lan, Z., Xu, Z., Li, X., Cai, Y., et al.: Informedia at TRECVID 2014 MED and MER. In: NIST TRECVID Video Retrieval Evaluation Workshop (2014)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the European Commission under contract FP7-600826 ForgetIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Tzelepis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Tzelepis, C., Mezaris, V., Patras, I. (2016). Video Event Detection Using Kernel Support Vector Machine with Isotropic Gaussian Sample Uncertainty (KSVM-iGSU). In: Tian, Q., Sebe, N., Qi, GJ., Huet, B., Hong, R., Liu, X. (eds) MultiMedia Modeling. MMM 2016. Lecture Notes in Computer Science(), vol 9516. Springer, Cham. https://doi.org/10.1007/978-3-319-27671-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27671-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27670-0

  • Online ISBN: 978-3-319-27671-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy