Skip to main content

Alignment of Tractograms as Linear Assignment Problem

  • Conference paper
  • First Online:
Computational Diffusion MRI

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Diffusion magnetic resonance imaging (dMRI) offers a unique approach to study the structural connectivity of the brain. DMRI allows to reconstruct the 3D pathways of axons within the white matter as a set of polylines (streamlines), called the tractogram. Tractograms of different brains need to be aligned in a common representation space for various purposes, such as group-analysis, segmentation or atlas construction. Typically, such alignment is obtained with affine registration, through which tractograms are globally transformed, with the limit of not reconciling local differences. In this paper, we propose to improve registration-based alignment by what we call mapping. The goal of mapping is to find the correspondence between streamlines across brains, i.e. to find the map of which streamline in one tractogram correspond to which streamline in the other tractogram. We frame the mapping problem as a rectangular linear assignment problem (RLAP), a cornerstone of combinatorial optimization. We adopt a variant of the famous Hungarian method to get the optimal solution of the RLAP. We validate the proposed method with a tract alignment application, where we register two tractograms and, given one anatomical tract, we segment the corresponding one in the other tractogram. On dMRI data from the Human Connectome Project, we provide experimental evidence that mapping, implemented as a RLAP, can vastly improve both the true positive rate and false discovery rate of registration-based alignment, establishing a strong argument in favor of what we propose. We conclude by discussing the limitations of the current approach, which gives perspective for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Additionally we introduce the technical assumption that \(\vert T_{A}\vert \leq \vert T_{B}\vert \).

  2. 2.

    A partial permutation matrix is a rectangular version of the permutation matrix, i.e. \(P = [p_{ij}]_{ij} \in \{ 0, 1\}^{n\times m}\) and \(\sum _{j=1}^{n}p_{ij} = 1\) but \(\sum _{i=1}^{m}p_{ij} \leq 1\).

  3. 3.

    http://dipy.org.

  4. 4.

    http://scikit-learn.org.

  5. 5.

    For simplicity we limit the view to one slice only.

References

  1. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994). http://dx.doi.org/10.1016/s0006-3495(94)80775-1

    Article  Google Scholar 

  2. Bijsterbosch, J., Volgenant, A.: Solving the rectangular assignment problem and applications. Ann. Oper. Res. (2010). http://dx.doi.org/10.1007/s10479-010-0757-3

    MATH  Google Scholar 

  3. Bourgeois, F., Lassalle, J.C.: An extension of the Munkres algorithm for the assignment problem to rectangular matrices. Commun. ACM 14(12), 802–804 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. Society for Industrial and Applied Mathematics, 2nd edn. (2012). http://dx.doi.org/10.1137/1.9781611972238

  5. Catani, M., Allin, M.P.G., Husain, M., Pugliese, L., Mesulam, M.M., Murray, R.M., Jones, D.K.: Symmetries in human brain language pathways correlate with verbal recall. Proc. Natl. Acad. Sci. 104(43), 17163–17168 (2007)

    Article  Google Scholar 

  6. Garyfallidis, E., Wassermann, D., Descoteaux, M.: Direct native-space fiber bundle alignment for group comparisons. In: International Society for Magnetic Resonance Imaging (ISMRM). Milan, Italy (2014). https://hal.inria.fr/hal-00991740

  7. Golding, D., Tittgemeyer, M., Anwander, A., Douglas, T.: A comparison of methods for the registration of tractographic fibre images. In: Robinson, P., Nel, A. (eds.) Proceedings of the Twenty-Second Annual Symposium of the Pattern Recognition Association of South Africa, pp. 55–59 (2011)

    Google Scholar 

  8. Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5(2), 143–156 (2001). http://view.ncbi.nlm.nih.gov/pubmed/11516708

    Article  Google Scholar 

  9. Jonker, R., Volgenant, A.: A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38(4), 325–340 (1987). http://dx.doi.org/10.1007/bf02278710

    Article  MathSciNet  MATH  Google Scholar 

  10. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. 2(1–2), 83–97 (1955). http://dx.doi.org/10.1002/nav.3800020109

    Article  MathSciNet  MATH  Google Scholar 

  11. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nguyen, T.B., Olivetti, E., Avesani, P.: Mapping tractography across subjects (2014). 4th NIPS Workshop on Machine Learning and Interpretation in Neuroimaging (MLINI). Accepted (forthcoming)

    Google Scholar 

  13. O’Donnell, L.J., Wells, W.M., Golby, A.J., Westin, C.F.F.: Unbiased groupwise registration of white matter tractography. In: Medical Image Computing and Computer-Assisted Intervention: MICCAI - International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 15(Pt 3), pp. 123–130 (2012). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3638882/

    Google Scholar 

  14. Raffelt, D., Tournier, J.D., Fripp, J., Crozier, S., Connelly, A., Salvado, O.: Symmetric diffeomorphic registration of fibre orientation distributions. NeuroImage (2011). http://dx.doi.org/10.1016/j.neuroimage.2011.02.014JD

  15. Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach, E.J., Glasser, M.F., Hernandez, M., Sapiro, G., Jenkinson, M., Feinberg, D.A., Yacoub, E., Lenglet, C., Van Essen, D.C., Ugurbil, K., Behrens, T.E.: WU-Minn HCP consortium: advances in diffusion MRI acquisition and processing in the human connectome project. NeuroImage 80, 125–143 (2013). http://view.ncbi.nlm.nih.gov/pubmed/23702418

    Article  Google Scholar 

  16. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consortium, W.M.H., et al.: The Wu-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  17. Wassermann, D., Makris, N., Rathi, Y., Shenton, M., Kikinis, R., Kubicki, M., Westin, C.F.F.: On describing human white matter anatomy: the white matter query language. In: Medical Image Computing and Computer-Assisted Intervention: MICCAI - International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 16(Pt 1), pp. 647–654 (2013). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029160/

    Google Scholar 

  18. Zhang, S., Correia, S., Laidlaw, D.H.: Identifying white-matter fiber bundles in DTI data using an automated proximity-based fiber-clustering method. IEEE Trans. Vis. Comput. Graph. 14(5), 1044–1053 (2008). http://dx.doi.org/10.1109/tvcg.2008.52

    Article  Google Scholar 

Download references

Acknowledgements

The research was funded by the Autonomous Province of Trento, Call “Grandi Progetti 2012”, project “Characterizing and improving brain mechanisms of attention - ATTEND”.

Data were provided [in part] by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nusrat Sharmin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sharmin, N., Olivetti, E., Avesani, P. (2016). Alignment of Tractograms as Linear Assignment Problem. In: Fuster, A., Ghosh, A., Kaden, E., Rathi, Y., Reisert, M. (eds) Computational Diffusion MRI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-28588-7_10

Download citation

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy