Skip to main content

Semi-supervised Fuzzy c-Means Algorithms by Revising Dissimilarity/Kernel Matrices

  • Chapter
  • First Online:
Fuzzy Sets, Rough Sets, Multisets and Clustering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 671))

  • 1009 Accesses

Abstract

Semi-supervised clustering uses partially labeled data, as often occurs in practical clustering, to obtain a better clustering result. One approach uses hard constraints which specify data that must and cannot be within the same cluster. In this chapter, we propose another approach to semi-supervised clustering with soft pairwise constraints. The clustering method used is fuzzy c-meansĀ (FCM), a commonly used fuzzy clustering method. Two previously proposed variants, entropy-regularized relational/kernel fuzzy c-means clustering and indefinite kernel fuzzy c-means clustering algorithm are modified to use the soft constraints. In addition, a method is discussed that propagates pairwise constraints when the given constraints are not sufficient for obtaining the desired clustering result. Using some numerical examples, it is shown that the proposed algorithms obtain better clustering results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, New York, (1981).

    Google ScholarĀ 

  2. Miyamoto, S. and Umayahara, K.: ā€œMethods in Hard and Fuzzy Clustering,ā€ in: Liu, Z.-Q. and Miyamoto, S. (eds), Soft Computing and Human-centered Machines, Springer-Verlag Tokyo, (2000).

    Google ScholarĀ 

  3. Hathaway, R.J., Davenport, J.W. and Bezdek, J.C.: ā€œRelational Duals of the \(c\)-means Clustering Algorithms,ā€ Pattern Recognition, Vol.Ā 22, No.Ā 2, pp.Ā 205ā€“212, (1989).

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  4. Hathaway, R.J. and Bezdek, J.C.: ā€œNERF C-means: Non-Euclidean Relational Fuzzy Clustering,ā€ Pattern Recognition, Vol.Ā 27, No.Ā 3, pp.Ā 429ā€“437, (1994).

    Google ScholarĀ 

  5. Kanzawa, Y.: ā€œEntropy-Regularized Fuzzy Clustering for Non-Euclidean Relational Data and Indefinite Kernel Data,ā€ JACIII, Vol.Ā 16, No.Ā 7, pp.Ā 784ā€“792, (2012).

    Google ScholarĀ 

  6. Miyamoto, S. and Suizu, D.: ā€œFuzzy \(c\)-Means Clustering Using Kernel Functions in Support Vector Machines,ā€ JACIII, Vol.Ā 7, No.Ā 1, pp.Ā 25ā€“30, (2003).

    Google ScholarĀ 

  7. Miyamoto, S., Kawasaki, Y., and Sawazaki, K.: ā€œAn Explicit Mapping for Kernel Data Analysis and Application to Text Analysis,ā€ Proc. IFSA-EUSFLAT 2009, pp.Ā 618ā€“623, (2009).

    Google ScholarĀ 

  8. Kanzawa, Y., Endo, Y., and Miyamoto, S.: ā€œIndefinite Kernel Fuzzy \(c\)-Means Clustering Algorithms,ā€ Lecture Notes in Computer Science, Vol.Ā 6408, pp.Ā 116ā€“128, (2010).

    Google ScholarĀ 

  9. Bouchachia, A. and Pedrycz, W.: ā€œData Clustering with Partial Supervision,ā€ Data Mining and Knowledge Discovery, Vol.Ā 12, pp.Ā 47ā€“78, (2006).

    Google ScholarĀ 

  10. Yamazaki, M., Miyamoto, S. and Lee, I.-J.: ā€œSemi-supervised Clustering with Two Types of Additional Functions,ā€ Proc. 24th Fuzzy System Symposium, 2E2-01, (2009).

    Google ScholarĀ 

  11. Yamashiro, M., Endo, Y., Hamasuna, Y. and Miyamoto, S.: ā€œA Study on Semi-supervised Fuzzy \(c\)-Means,ā€ Proc. 24th Fuzzy System Symposium, 2E3-04, (2009).

    Google ScholarĀ 

  12. Kanzawa, Y., Endo, Y. and Miyamoto, S.: ā€œA Semi-Supervised Entropy Regularized Fuzzy \(c\)-Means,ā€ Proc. 2009 International Symposium on Nonlinear Theory and Its Applications, pp.Ā 564ā€“567, (2009).

    Google ScholarĀ 

  13. Wagstaff, K., Cardie, C., Rogers, S. and Schroedl, S.: ā€œConstrained K-means Clustering with Background Knowledge,ā€ Proc. Eighteenth International Conference on Machine-Learning, pp.Ā 577ā€“584, (2001).

    Google ScholarĀ 

  14. Grira, N., Crucianu, M. and Boujemaa, N.: ā€œSemi-supervised Image Database Categorization using Pairwise Constraints,ā€ Proc. 2005 IEEE International Conference on Image Processing, Vol.Ā 3, pp. 1228ā€“1231, (2005).

    Google ScholarĀ 

  15. Kanzawa, Y., Endo, Y. and Miyamoto, S: ā€œSome Pairwise Constrained Semi-Supervised Fuzzy \(c\)-Means Clustering,ā€ LNAI, Vol.Ā 5681, pp. 268ā€“281, (2009).

    Google ScholarĀ 

  16. Kanzawa, Y., Endo, Y., and Miyamoto, S.: ā€œSemi-Supervised Fuzzy c-Means Algorithm by Revising Dissimilarity Between Data,ā€ JACIII, Vol.Ā 15, No.Ā 1, pp.Ā 95ā€“101, (2011).

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchi Kanzawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kanzawa, Y. (2017). Semi-supervised Fuzzy c-Means Algorithms by Revising Dissimilarity/Kernel Matrices. In: Torra, V., Dahlbom, A., Narukawa, Y. (eds) Fuzzy Sets, Rough Sets, Multisets and Clustering. Studies in Computational Intelligence, vol 671. Springer, Cham. https://doi.org/10.1007/978-3-319-47557-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47557-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47556-1

  • Online ISBN: 978-3-319-47557-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy