Abstract
In this paper a direct, pixel-based skin detection method is proposed and evaluated. Proposed approach discards any spatial information that can be found in digital image and focuses entirely on data-oriented analysis. To ensure the best perfomance two classifiers (Regularized Logistic Regression and Artificial Neural Network with Regularization trained with Backpropagation) were deeply examined, evaluated and compared for this task. The best model achieved the almost perfect accuracy and quality of classification on the used ‘Skin Segmentation Dataset’ provided for the UCI Machine Learning Repository with over 99% accuracy, precision, recall and specificity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kakumanu, P., Makrogiannis, S., & Bourbakis, N. (2007). A survey of skin-color modeling and detection methods. Pattern Recognition, 40(3), 1106–1122.
Khan, Rehanullah, Hanbury, Allan, Stöttinger, Julian, & Bais, Abdul. (2012). Color based skin classification. Pattern Recognition Letters, 33(2), 157–163.
Phung, S. L., Bouzerdoum, A., & Chai, D. (2005). Skin segmentation using color pixel classification: Analysis and comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(1), 148–154.
Kawulok, M., Nalepa, J., & Kawulok, J. (2014). Skin detection and segmentation in color images. In M. Emre Celebi & B. Smolka (Eds.), Advances in low-level color image processing (Vol. 11, pp. 329–366). Lecture notes in computational vision and biomechanics. Netherlands: Springer.
Kawulok, M. (2005). Application of support vector machines in automatic human face recognition. Medical Informatics & Technology (MIT), 9, 143–150.
Chaves-González, Jose M., Vega-Rodríguez, Miguel A., Gómez-Pulido, Juan A., & Sánchez-Pérez, Juan M. (2010). Detecting skin in face recognition systems: A colour spaces study. Digital Signal Processing, 20(3), 806–823.
Hajraoui, Abdellatif, & Sabri, Mohamed. (2014). Face detection algorithm based on skin detection, watershed method and gabor filters. International Journal of Computer Applications, 94(6), 33–39.
Kawulok, M. (2008). Dynamic skin detection in color images for sign language recognition. Proceedings of the ICISP, LNCS, 5099, 112–119.
Grzejszczak, T., Kawulok, M., & Galuszka, A. (2016). Hand landmarks detection and localization in color images. Multimedia Tools and Applications, 75(23), 16363–16387.
Daniec, K., Jedrasiak, K., Nawrat, A., & Bereska, D. (2013). Gyro-stabilized platform for multispectral image acquisition. In A. Nawrat & Z. Kuś (Eds.), Vision based systems for UAV applications (pp. 115–121). Springer.
Zarit, B. D., Super, B. J., & Quek, F. K. H. (1999). Comparison of five color models in skin pixel classification. In International Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems, 1999. Proceedings (pp. 58–63). IEEE.
Lee, J. S., et al. (2007). Naked image detection based on adaptive and extensible skin color model. Pattern Recognition, 40(8), 2261–2270.
Chen, M. J., Chi, M. C., Hsu, C. T., & Chen, J. W. (2003). ROI video coding based on H.263+ with robust skin-color detection technique. IEEE Transactions on Consumer Electronics, 49(3), 724–730.
Chai, D., & Bouzerdoum, A. (2000). A Bayesian approach to skin color classification in YCbCr color space. In TENCON 2000. Proceedings (Vol. 2, pp. 421–424). IEEE.
Palus H. (2006). Color image segmentation: Selected techniques. In R. Lukac & K. N. Plataniotis (Eds.), Color image processing: Methods and applications (pp. 103–128). Boca Raton: CRC Press.
Palus, H. (1992). Colour spaces in computer vision. Machine Graphics and Vision, 1(3), 543–554.
Al-Mohair, K., & Suandi, S. A. (2012). Human skin color detection: A review on neural network perspective. International Journal of Innovative Computing, Information and Control, 8(12), 8115–8131.
Świtoński, A., Josiński, H., Jȩdrasiak, K., Polański, A., & Wojciechowski, K. (2010). Classification of poses and movement phases. Computer Vision and Graphics, 193–200.
Ryt, A., Sobel, D., Kwiatkowski, J., Domzal, M., Jedrasiak, K., & Nawrat, A. (2014, September). Real-time laser point tracking. In International Conference on Computer Vision and Graphics (pp. 542–551). Springer: Cham.
Sobel, D., Jȩdrasiak, K., Daniec, K., Wrona, J., Jurgaś, P., & Nawrat, A. M. (2014). Camera calibration for tracked vehicles augmented reality applications. In Innovative control systems for tracked vehicle platforms (pp. 147–162). Springer International Publishing.
Jedrasiak, K., & Nawrat, A. (2008). Fast colour recognition algorithm for robotics. Problemy Eksploatacji, 3, 69–76.
Daniec, K., Iwaneczko, P., Jȩdrasiak, K., & Nawrat, A. (2013). Prototyping the autonomous flight algorithms using the Prepar3D® simulator. In Vision based systems for UAV applications (pp. 219–232). Springer International Publishing.
Bhatt, R., & Dhall, A. (2010). Skin Segmentation Dataset, UCI Machine Learning repository.
Du, K.-L., & Swamy, M. N. S. (2013). Neural networks and statistical learning. Springer Science & Business Media.
Werbos, P. J. (1994). The roots of backpropagation: From ordered derivatives to neural networks and political forecasting (Vol. 1). Wiley.
Kasinski, A., Florek, A., & Schmidt, A. (2008). The PUT face database. Image Processing and Communications, 13(3–4), 59–64.
Jaccard, P. (1912). The distribution of the flora in the Alpine Zone. New Phytologist, 11(2), 37–50.
Acknowledgements
This work was supported by Polish Ministry for Science and Higher Education under internal grant BKM/514/RAu1/2015/t-21 for Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Binias, B., Frąckiewicz, M., Jaskot, K., Palus, H. (2018). Pixel Classification for Skin Detection in Color Images. In: Nawrat, A., Bereska, D., Jędrasiak, K. (eds) Advanced Technologies in Practical Applications for National Security. Studies in Systems, Decision and Control, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-64674-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-64674-9_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64673-2
Online ISBN: 978-3-319-64674-9
eBook Packages: EngineeringEngineering (R0)