Abstract
The aim of the article is to provide a systematic presentation of basic tools that are most commonly used to analyze electroencephalography signals (EEG) in brain–computer interfaces for detection of steady-state visually evoked potentials (SSVEP). We use a database of EEG signals containing SSVEP and demonstrate the desirability of the use of selected methods, showing their benefits. Methods such as independent components analysis (ICA), frequency analysis (DFT), and time-frequency analysis (STFT) are presented. For SSVEP, the features of EEG signal should be stable with time. Short-Time Fourier Transform (STFT) allows to confirm this stability. Independent Component Analysis is used to extract pure SSVEP components. The advantages of each method are described and the obtained results are discussed. Further, source location by the use of low-resolution electromagnetic tomography algorithm is demonstrated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cudo, A., Zabielska, E., Zapaa, D.: Brain-computer interfaces based on electroencephalography method. Studia Z Psychologii W KUL 18, 195–216 (2012)
Tadeusiewicz, R.: Neural Networks. RM Academic Publishing House, Warsaw (1993). (in Polish)
Durka, P.J., Kuś, R., Żygierewicz, J., Michalska, M., Milanowski, P., Łabęcki, M., Spustek, T., Laszuk, D., Duszyk, A., Kruszyński, M.: User-centered design of brain-computer interfaces: OpenBCI.pl and BCI Appliance. Bull. Pol. Acad. Sci. Techn. Sci. 60(3), 427–431 (2012)
Rak, R.J., Kołodziej, M., Majkowski, A.: Brain-computer interface as measurement and control system the review paper. Metrol. Meas. Syst. 19(3), 427–444 (2012)
Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)
Wolpaw, J., Wolpaw, E.W.: Brain-Computer Interfaces Principles and Practice. Oxford University Press, New York (2012)
Byczuk, M., Poryzała, P., Materka, A.: On diversity within operators’ EEG responses to LED-produced alternate stimulus in SSVEP BCI. Bull. Pol. Acad. Sci. Techn. Sci. 60(3) (2012)
Liu, Q., Chen, K., Ai, Q., Xie, S.Q.: Review: recent development of signal processing algorithms for SSVEP-based brain computer interfaces. J. Med. Biolog. Eng. 34(4), 299 (2013)
Materka, A., Poryzala, P.: High-speed noninvasive brain-computer interfaces. In: 2013 6th International Conference on Human System Interactions (HSI), Sopot, pp. 7–12 (2013)
Materka, A., Poryzała, P.: A robust asynchronous SSVEP brain-computer interface based on cluster analysis of canonical correlation coefficients. In: Human-Computer Systems Interaction: Backgrounds and Applications 3, pp. 3–14. Springer International Publishing (2014)
Mouli, S., Palaniappan, R., Sillitoe, I.P., Gan, J.Q.: Performance analysis of multi-frequency SSVEP-BCI using clear and frosted color LED stimuli. In: 2013 IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 1–4 (2013)
Zhu, D., Bieger, J., Garcia Molina, G., Aarts, R.M.: A survey of stimulation methods used in SSVEP-based BCIs. In: Computational Intelligence and Neuroscience (2010)
McFarland, D.J., McCane, L.M., David, S.V., Wolpaw, J.R.: Spatial filter selection for EEG-based communication. Electroencephalogr. Clin. Neurophysiol. 103(3), 386–394 (1997)
Jung, T.-P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., Sejnowski, T.J.: Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin. Neurophysiol. 111(10), 1745–1758 (2000)
Joyce, C.A., Gorodnitsky, I.F., Kutas, M.: Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology 41(2), 313–325 (2004)
Vigário, R., Sarela, J., Jousmiki, V., Hamalainen, M., Oja, E.: Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans. Biomed. Eng. 47(5), 589–593 (2000)
Rejer, I., Górski, P.: Independent component analysis for EEG data preprocessing - algorithms comparison. In: Computer Information Systems and Industrial Management, pp. 108–119. Springer, Heidelberg (2013)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2004)
Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. Wiley, New York (2002)
Cardoso, J.-F.: Source separation using higher order moments. In: Proceedings of ICASSP, pp. 2109–2112 (1989)
Kovacevic, N., McIntosh, A.R.: Groupwise independent component decomposition of EEG data and partial least square analysis. Neuroimage 35(3), 1103–1112 (2007)
Grech, R., Cassar, T., Muscat, J., Camilleri, K.P., Fabri, S.G., Zervakis, M., Xanthopoulos, P., Sakkalis, V., Vanrumste, B.: Review on solving the inverse problem in EEG source analysis. J. Neuroeng. Rehabil. 5, 25 (2008)
Pascual-Marqui, R.D.: Review of methods for solving the EEG inverse problem. Int. J. Bioelectromagnetism 1(1), 75–86 (1999)
Pascual-Marqui, R.D., Esslen, M., Kochi, K., Lehmann, D.: Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Meth. Find Exp. Clin. Pharmacol. 24, 91–95 (2002)
Pascual-Marqui, R.D.: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Meth. Find Exp. Clin. Pharmacol. 24, 5–12 (2002)
Painold, A., Anderer, P., Holl, A.K., Letmaier, M., Saletu-Zyhlarz, G.M., Saletu, B., Bonelli, R.M.: EEG low-resolution brain electromagnetic tomography (LORETA) in Huntington’s disease. J. Neurol. 258(5), 840–854 (2011)
Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Meth. 134(1), 9–21 (2004)
Cichocki, A., Amari, S., Siwek, K., Tanaka, T., Phan, A.H.: http://www.bsp.brain.riken.jp/ICALAB/. Accessed 03 Oct 2016
Pascual-Marqui, R.D.: http://www.uzh.ch/keyinst/loreta.htm#_Toc391372613. Accessed 03 Oct 2016
Talairach, J., Tournoux, P.: Co-planar Stereotaxic Atlas of the Human Brain. Thieme, Stuttgart (1988)
Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algo-rithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), 1–13 (2007)
Anupama, H.S., Cauvery, N.K., Lingaraju, G.M.: Real-time EEG based object recognition system using brain computer interface. In: 2014 International Conference on Contemporary Computing and Informatics (IC3I), pp. 1046–1051 (2014)
Zhang, H., Berg, A.C., Maire, M., Malik, J.: SVM-KNN: discriminative nearest neighbor classification for visual category recognition. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), pp. 2126–2136 (2006)
Anupama, H.S., Lingaraju, G.M.: k-NN based object recognition system using brain computer interface. Int. J. Comput. Appl. 120(2), 35–38 (2015)
Marco-Pallarés, J., Grau, C., Ruffini, G.: Combined ICA-LORETA analysis of mismatch negativity. Neuroimage 25(2), 471–477 (2005)
Delorme, A., Westerfield, M., Makeig, S.: Medial prefrontal theta bursts precede rapid motor responses during visual selective attention. J. Neurosci. 27(44), 11949–11959 (2007)
Diaconescu, A.O., Kovacevic, N., McIntosh, A.R.: Modality-independent processes in cued motor preparation revealed by cortical potentials. Neuroimage 42(3), 1255–1265 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Kołodziej, M., Majkowski, A., Oskwarek, Ł., Rak, R.J., Tarnowski, P. (2018). Processing and Analysis of EEG Signal for SSVEP Detection. In: Augustyniak, P., Maniewski, R., Tadeusiewicz, R. (eds) Recent Developments and Achievements in Biocybernetics and Biomedical Engineering. PCBBE 2017. Advances in Intelligent Systems and Computing, vol 647. Springer, Cham. https://doi.org/10.1007/978-3-319-66905-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-66905-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66904-5
Online ISBN: 978-3-319-66905-2
eBook Packages: EngineeringEngineering (R0)