Abstract
Despite the ubiquity of temporal data and considerable research on the effective and efficient processing of such data, database systems largely remain designed for processing the current state of some modeled reality. More recently, we have seen an increasing interest in the processing of temporal data that captures multiple states of reality. The SQL:2011 standard incorporates some temporal support, and commercial DBMSs have started to offer temporal functionality in a step-by-step manner, such as the representation of temporal intervals, temporal primary and foreign keys, and the support for so-called time-travel queries that enable access to past states.
This tutorial gives an overview of state-of-the-art research results and technologies for storing, managing, and processing temporal data in relational database management systems. Following an introduction that offers a historical perspective, we provide an overview of basic temporal database concepts. Then we survey the state-of-the-art in temporal database research, followed by a coverage of the support for temporal data in the current SQL standard and the extent to which the temporal aspects of the standard are supported by existing systems. The tutorial ends by covering a recently proposed framework that provides comprehensive support for processing temporal data and that has been implemented in PostgreSQL.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
To comply with the SQL:2011 standard, in this section we use closed-open intervals, whereas in the other sections we use closed-closed intervals.
- 2.
To keep the examples simple, we use only the year, not complete dates or timestamps.
References
Agesen, M., Böhlen, M.H., Poulsen, L., Torp, K.: A split operator for now-relative bitemporal databases. In: Proceedings of the 17th International Conference on Data Engineering, ICDE 2001, pp. 41–50 (2001)
Al-Kateb, M., Ghazal, A., Crolotte, A.: An efficient SQL rewrite approach for temporal coalescing in the teradata RDBMS. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012. LNCS, vol. 7447, pp. 375–383. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32597-7_32
Al-Kateb, M., Ghazal, A., Crolotte, A., Bhashyam, R., Chimanchode, J., Pakala, S.P.: Temporal query processing in teradata. In: Proceedings of the 16th International Conference on Extending Database Technology, EDBT 2013, pp. 573–578 (2013)
Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)
Arbesman, S.: Stop hyping big data and start paying attention to ‘long data’. Wired.com (2013). https://www.wired.com/2013/01/forget-big-data-think-long-data/
Bair, J., Böhlen, M.H., Jensen, C.S., Snodgrass, R.T.: Notions of upward compatibility of temporal query languages. Wirtschaftsinformatik 39(1), 25–34 (1997)
Behrend, A., et al.: Temporal state management for supporting the real-time analysis of clinical data. In: Bassiliades, N., et al. (eds.) New Trends in Database and Information Systems II. AISC, vol. 312, pp. 159–170. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10518-5_13
Ben-Gan, I., Sarka, D., Wolter, R., Low, G., Katibah, E., Kunen, I.: Inside Microsoft SQL Server 2008 T-SQL programming, Chap. 12. In: Temporal Support in the Relational Model. Microsoft Press (2008)
Bettini, C., Jajodia, S., Wang, S.: Time Granularities in Databases, Data Mining, and Temporal Reasoning. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-662-04228-1
Bettini, C., Sean Wang, X., Jajodia, S.: Temporal granularity. In: Liu and Özsu [60], pp. 2968–2973
Böhlen, M.H., Gamper, J., Jensen, C.S.: An algebraic framework for temporal attribute characteristics. Ann. Math. Artif. Intell. 46(3), 349–374 (2006)
Böhlen, M.H., Gamper, J., Jensen, C.S.: How would you like to aggregate your temporal data? In: Proceedings of the 13th International Symposium on Temporal Representation and Reasoning, TIME 2006, pp. 121–136 (2006)
Böhlen, M., Gamper, J., Jensen, C.S.: Multi-dimensional aggregation for temporal data. In: Ioannidis, Y., et al. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 257–275. Springer, Heidelberg (2006). https://doi.org/10.1007/11687238_18
Böhlen, M.H., Jensen, C.S.: Temporal data model and query language concepts. In: Encyclopedia of Information Systems, pp. 437–453. Elsevier (2003)
Böhlen, M.H., Jensen, C.S.: Sequenced semantics. In: Liu and Özsu [60], pp. 2619–2621
Böhlen, M.H., Jensen, C.S., Snodgrass, R.T.: Temporal statement modifiers. ACM Trans. Database Syst. 25(4), 407–456 (2000)
Böhlen, M.H., Jensen, C.S., Snodgrass, R.T.: Current semantics. In: Liu and Özsu [60], pp. 544–545
Böhlen, M.H., Jensen, C.S., Snodgrass, R.T.: Nonsequenced semantics. In: Liu and Özsu [60], pp. 1913–1915
Böhlen, M.H., Snodgrass, R.T., Soo, M.D.: Coalescing in temporal databases. In: Proceedings of 22th International Conference on Very Large Data Bases, VLDB 1996, pp. 180–191 (1996)
Cohen Boulakia, S., Tan, W.C.: Provenance in scientific databases. In: Liu and Özsu [60], pp. 2202–2207
Bouros, P., Mamoulis, N.: A forward scan based plane sweep algorithm for parallel interval joins. PVLDB 10(11), 1346–1357 (2017)
Cafagna, F., Böhlen, M.H.: Disjoint interval partitioning. VLDB J. 26(3), 447–466 (2017)
Chomicki, J., Toman, D., Böhlen, M.H.: Querying ATSQL databases with temporal logic. ACM Trans. Database Syst. 26(2), 145–178 (2001)
Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing environment. ACM Trans. Database Syst. 25(2), 179–227 (2000)
Date, C.J., Darwen, H., Lorentzos, N.A.: Temporal Data and the Relational Model. Elsevier (2002)
Davis, J.: Online temporal PostgreSQL reference (2009). http://temporal.projects.postgresql.org/reference.html
Dignös, A., Böhlen, M.H., Gamper, J.: Temporal alignment. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2012, pp. 433–444 (2012)
Dignös, A., Böhlen, M.H., Gamper, J.: Query time scaling of attribute values in interval timestamped databases. In: Proceedings of the 29th International Conference on Data Engineering, ICDE 2013, pp. 1304–1307 (2013)
Dignös, A., Böhlen, M.H., Gamper, J.: Overlap interval partition join. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2014, pp. 1459–1470 (2014)
Dignös, A., Böhlen, M.H., Gamper, J., Jensen, C.S.: Extending the kernel of a relational DBMS with comprehensive support for sequenced temporal queries. ACM Trans. Database Syst. 41(4), 26:1–26:46 (2016)
Dyreson, C.E.: Chronon. In: Liu and Özsu [60], p. 329
Dyreson, C.E., Jensen, C.S., Snodgrass, R.T.: Now in temporal databases. In: Liu and Özsu [60], pp. 1920–1924
Dyreson, C.E., Lin, H., Wang, Y.: Managing versions of web documents in a transaction-time web server. In: Proceedings of the 13th International Conference on World Wide Web, WWW 2004, pp. 422–432 (2004)
Dyreson, C.E., Rani, V.A.: Translating temporal SQL to nested SQL. In: Proceedings of the 23rd International Symposium on Temporal Representation and Reasoning, TIME 2016, pp. 157–166 (2016)
Dyreson, C.E., Rani, V.A., Shatnawi, A.: Unifying sequenced and non-sequenced semantics. In: Proceedings of the 22nd International Symposium on Temporal Representation and Reasoning, TIME 2015, pp. 38–46 (2015)
Jensen, C.S., Clifford, J., Gadia, S.K., Grandi, F., Kalua, P.P., Kline, N., Lorentzos, N., Mitsopoulos, Y., Montanari, A., Nair, S.S., Peressi, E., Pernici, B., Robertson, E.L., Roddick, J.F., Sarda, N.L., Scalas, M.R., Segev, A., Snodgrass, R.T., Tansel, A., Tiberio, P., Tuzhilin, A., Wuu, G.T.J.: A consensus test suite of temporal database queries. Technical report R 93–2034, Aalborg University, Department of Mathematics and Computer Science, Fredrik Bajers Vej 7E, DK-9220 Aalborg Øst, Denmark, November 1993
Etzion, O., Jajodia, S., Sripada, S. (eds.): Temporal Databases: Research and Practice. LNCS, vol. 1399. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053695
Gadia, S.K.: A homogeneous relational model and query languages for temporal databases. ACM Trans. Database Syst. 13(4), 418–448 (1988)
Gadia, S.K., Yeung, C.-S.: A generalized model for a relational temporal database. In: Proceedings of the 1988 ACM SIGMOD International Conference on Management of Data, SIGMOD 1988, pp. 251–259 (1988)
Galton, A.: A critical examination of Allen’s theory of action and time. Artif. Intell. 42(2–3), 159–188 (1990)
Gamper, J., Böhlen, M.H., Jensen, C.S.: Temporal aggregation. In: Liu and Özsu [60], pp. 2924–2929
Gao, D., Jensen, C.S., Snodgrass, R.T., Soo, M.D.: Join operations in temporal databases. VLDB J. 14(1), 2–29 (2005)
Gao, D., Snodgrass, R.T.: Temporal slicing in the evaluation of XML queries. In: Proceedings of the 29th International Conference on Very Large Data Bases, VLDB 2003, pp. 632–643 (2003)
Grandi, F.: Temporal databases. In: Encyclopedia of Information Science and Technology, 3rd edn., pp. 1914–1922. IGI Global (2015)
Grandi, F., Mandreoli, F., Martoglia, R., Penzo, W.: A relational algebra for streaming tables living in a temporal database world. In: Proceedings of the 24th International Symposium on Temporal Representation and Reasoning, TIME 2017, pp. 15:1–15:17 (2017)
Grandi, F., Mandreoli, F., Tiberio, P.: Temporal modelling and management of normative documents in XML format. Data Knowl. Eng. 54(3), 327–354 (2005)
Jensen, C.S., Dyreson, C.E., Böhlen, M.H., Clifford, J., Elmasri, R., Gadia, S.K., Grandi, F., Hayes, P.J., Jajodia, S., Käfer, W., Kline, N., Lorentzos, N.A., Mitsopoulos, Y.G., Montanari, A., Nonen, D.A., Peressi, E., Pernici, B., Roddick, J.F., Sarda, N.L., Scalas, M.R., Segev, A., Snodgrass, R.T., Soo, M.D., Uz Tansel, A., Tiberio, P., Wiederhold, G.: The consensus glossary of temporal database concepts. In Temporal Databases, Dagstuhl, pp. 367–405 (1997)
Jensen, C.S., Snodgrass, R.T.: Snapshot equivalence. In: Liu and Özsu [60], p. 2659
Jensen, C.S., Snodgrass, R.T.: Temporal data models. In: Liu and Özsu [60], pp. 2952–2957
Jensen, C.S., Snodgrass, R.T.: Temporal element. In: Liu and Özsu [60], p. 2966
Jensen, C.S., Snodgrass, R.T.: Time instant. In: Liu and Özsu [60], p. 3112
Jensen, C.S., Snodgrass, R.T.: Timeslice operator. In: Liu and Özsu [60], pp. 3120–3121
Jensen, C.S., Snodgrass, R.T.: Transaction time. In: Liu and Özsu [60], pp. 3162–3163
Jensen, C.S., Snodgrass, R.T.: Valid time. In: Liu and Özsu [60], pp. 3253–3254
Kaufmann, M., Manjili, A.A., Vagenas, P., Fischer, P.M., Kossmann, D., Färber, F., May, N.: Timeline index: a unified data structure for processing queries on temporal data in SAP HANA. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, pp. 1173–1184 (2013)
Kaufmann, M., Vagenas, P., Fischer, P.M., Kossmann, D., Färber, F.: Comprehensive and interactive temporal query processing with SAP HANA. PVLDB 6(12), 1210–1213 (2013)
Kline, N., Snodgrass, R.T.: Computing temporal aggregates. In: Proceedings of the 11th International Conference on Data Engineering, ICDE 1995, pp. 222–231 (1995)
Kulkarni, K.G., Michels, J.-E.: Temporal features in SQL: 2011. SIGMOD Rec. 41(3), 34–43 (2012)
Künzner, F., Petković, D.: A comparison of different forms of temporal data management. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015. CCIS, vol. 521, pp. 92–106. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18422-7_8
Liu, L., Tamer Özsu, M. (eds.): Encyclopedia of Database Systems. Springer, Boston (2009)
López, I.F.V., Snodgrass, R.T., Moon, B.: Spatiotemporal aggregate computation: a survey. IEEE Trans. Knowl. Data Eng. 17(2), 271–286 (2005)
Lorentzos, N.A.: Time period. In: Liu and Özsu [60], p. 3113
Lorentzos, N.A., Mitsopoulos, Y.G.: SQL extension for interval data. IEEE Trans. Knowl. Data Eng. 9(3), 480–499 (1997)
Microsoft. SQL Server 2016 - temporal tables (2016). https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables
Moffitt, V.Z., Stoyanovich, J.: Towards sequenced semantics for evolving graphs. In: Proceedings of the 20th International Conference on Extending Database Technology, EDBT 2017, pp. 446–449 (2017)
Montanari, A., Chomicki, J.: Time domain. In: Liu and Özsu [60], pp. 3103–3107
Moon, B., López, I.F.V., Immanuel, V.: Efficient algorithms for large-scale temporal aggregation. IEEE Trans. Knowl. Data Eng. 15(3), 744–759 (2003)
Murray, C.: Oracle database workspace manager developer’s guide (2008). http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28396.pdf
Oracle. Database development guide - temporal validity support (2016). https://docs.oracle.com/database/121/ADFNS/adfns_design.htm#ADFNS967
Papaioannou, K., Böhlen, M.H.: TemProRA: top-k temporal-probabilistic results analysis. In: Proceedings of the 32nd IEEE International Conference on Data Engineering, ICDE 2016, pp. 1382–1385 (2016)
Persia, F., Bettini, F., Helmer, S.: An interactive framework for video surveillance event detection and modeling. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, pp. 2515–2518 (2017)
Petković, D.: Modern temporal data models: strengths and weaknesses. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015. CCIS, vol. 521, pp. 136–146. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18422-7_12
Petkovic, Dušan: Temporal data in relational database systems: a comparison. In: Rocha, Á., Correia, A.M., Adeli, H., Teixeira, M.M., Reis, L.P. (eds.) New Advances in Information Systems and Technologies. AISC, vol. 444, pp. 13–23. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31232-3_2
Piatov, D., Helmer, S.: Sweeping-based temporal aggregation. In: Gertz, M., et al. (eds.) SSTD 2017. LNCS, vol. 10411, pp. 125–144. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64367-0_7
Piatov, D., Helmer, S., Dignös, A.: An interval join optimized for modern hardware. In: Proceedings of the 32nd International Conference on Data Engineering, ICDE 2016, pp. 1098–1109 (2016)
Pitoura, E.: Historical graphs: models, storage, processing. In: Zimányi, E. (ed.) eBISS 2017. LNBIP, vol. 324, pp. 84–111. Springer, Cham (2017)
PostgreSQL Global Development Group. Documentation manual PostgreSQL - range types (2012). http://www.postgresql.org/docs/9.2/static/rangetypes.html
Rolland, C., Bodart, F., Léonard, M. (eds.) Proceedings of the IFIP TC 8/WG 8.1 Working Conference on Temporal Aspects in Information Systems (1988)
Saracco, C., Nicola, M., Gandhi, L.: A matter of time: Temporal data management in DB2 10 (2012). http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf
Snodgrass, R.T. (ed.): Proceedings of the International Workshop on an Infrastructure for Temporal Databases (1993)
Snodgrass, R.T. (ed.): The TSQL2 Temporal Query Language. Kluwer (1995)
Snodgrass, R.T. (ed.): A Case Study of Temporal Data. Teradata Corporation (2010)
Snodgrass, R.T., Böhlen, M.H., Jensen, C.S., Steiner, A.: Adding valid time to SQL/temporal. Technical report ANSI-96-501r2, October 1996
Snodgrass, R.T., Böhlen, M.H., Jensen, C.S., Steiner, A.: Transitioning temporal support in TSQL2 to SQL3. In: Temporal Databases, Dagstuhl, pp. 150–194 (1997)
Son, D., Elmasri, R.: Efficient temporal join processing using time index. In: Proceedings of the 8th International Conference on Scientific and Statistical Database Management, SSDBM 1996, pp. 252–261 (1996)
Soo, M.D., Jensen, C.S., Snodgrass, R.T.: An algebra for TSQL2. In: The TSQL2 Temporal Query Language, Chap. 27, pp. 501–544. Kluwer (1995)
Uz Tansel, A., Clifford, J., Gadia, S.K., Jajodia, S., Segev, A., Snodgrass, R.T. (eds.): Temporal Databases: Theory, Design, and Implementation. Benjamin/Cummings (1993)
Tao, Y., Papadias, D., Faloutsos, C.: Approximate temporal aggregation. In: Proceedings of the 20th International Conference on Data Engineering, ICDE 2004, pp. 190–201 (2004)
Teradata. Teradata database 13.10 - temporal table support (2010). http://www.info.teradata.com/download.cfm?ItemID=1005295
Teradata. Teradata database 14.10 - temporal table support (2014). http://www.info.teradata.com/eDownload.cfm?itemid=131540028
Terenziani, P., Snodgrass, R.T.: Reconciling point-based and interval-based semantics in temporal relational databases: a treatment of the telic/atelic distinction. IEEE Trans. Knowl. Data Eng. 16(5), 540–551 (2004)
Toman, D.: Point vs. interval-based query languages for temporal databases. In: Proceedings of the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 1996, pp. 58–67 (1996)
Toman, D.: Point-based temporal extensions of SQL and their efficient implementation. In: Etzion, O., Jajodia, S., Sripada, S. (eds.) Temporal Databases: Research and Practice. LNCS, vol. 1399, pp. 211–237. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053704
Tuma, P.A.: Implementing Historical Aggregates in TempIS. Ph.D. thesis, Wayne State University (1992)
Yang, J., Widom, J.: Incremental computation and maintenance of temporal aggregates. VLDB J. 12(3), 262–283 (2003)
Zemke, F.: Whats new in SQL: 2011. SIGMOD Rec. 41(1), 67–73 (2012)
Zhang, D., Markowetz, A., Tsotras, V.J., Gunopulos, D., Seeger, B.: Efficient computation of temporal aggregates with range predicates. In: Proceedings of the 20th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 2001 (2001)
Zhang, D., Tsotras, V.J., Seeger, B.: Efficient temporal join processing using indices. In: Proceedings of the 18th International Conference on Data Engineering, ICDE 2002, pp. 103–113 (2002)
Zhou, X., Wang, F., Zaniolo, C.: Efficient temporal coalescing query support in relational database systems. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 676–686. Springer, Heidelberg (2006). https://doi.org/10.1007/11827405_66
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Böhlen, M.H., Dignös, A., Gamper, J., Jensen, C.S. (2018). Temporal Data Management – An Overview. In: Zimányi, E. (eds) Business Intelligence and Big Data. eBISS 2017. Lecture Notes in Business Information Processing, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-319-96655-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-96655-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-96654-0
Online ISBN: 978-3-319-96655-7
eBook Packages: Computer ScienceComputer Science (R0)