Abstract
Due to the low signal to noise ratio, saliency detection in low contrast images has been a great challenge in computer vision. In this paper we propose a novel approach to detect salient object based on the computation of global saliencies in superpixel image blocks. This method tackles the image through a simple contrast measure, which first computes the global difference of two superpixels to obtain the resulting saliency map. Then, the map is refined by introducing the inter-superpixel similarity approach. The proposed model perfectly extracts the salient object in low contrast visibility conditions, which has been tested on three public datasets, as well as a nighttime image dataset. Experimental results demonstrate that the proposed method outperforms existing state-of-the-art saliency detection models.
Chapter PDF
Similar content being viewed by others
References
Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1597–1604 (2009)
Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 34(10), 1915–1926 (2012)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)
Bruce, N.D.B., Tsotsos, J.K.: Saliency, attention, and visual search: An information theoretic approach. Journal of Vision 9(3), art. no. 5 (2009)
Han, B., Zhu, H., Ding, Y.: Bottom-up saliency based on weighted sparse coding residual. In: Proceedings of the ACM Int. Conf. on Multimedia, pp. 1117–1120 (2011)
Zhang, L., Tong, M.H., Marks, T.K., Shan, H., Cottrell, G.W.: SUN: A Bayesian framework for saliency using natural statistics. Journal of Vision 8(7), art. no. 32 (2008)
Rosin, P.L.: A simple method for detecting salient regions. Pattern Recognition 42(11), 2363–2371 (2009)
Cheng, M.-M., Zhang, G.-X., Mitra, N.J., Huang, X., Hu, S.-M.: Global contrast based salient region detection. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 409–416 (2011)
Borji, A., Itti, L.: Exploiting local and global patch rarities for saliency detection. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 478–485 (2011)
Wang, L., Huang, K., Huang, Y., Tan, T.: Object detection and tracking for night surveillance based on salient contrast analysis. In: IEEE Int. Conf. on Image Processing, pp. 1113–1116 (2009)
Han, J., Yue, J., Zhang, Y., Bai, L.-F.: Salient contour extraction from complex natural scene in night vision image. Infrared Physics & Technology 63, 165–177 (2014)
Liu, T., Sun, J., Zheng, N.-N., Tang, X., Shum, H.-Y.: Learning to detect a salient object. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1–8 (2007)
Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1–8 (2007)
Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1155–1162 (2013)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. on Pattern Analysis and Machine Intelligence 34(11), 2274–2282 (2012)
Liu, Z., Meur, L., Luo, S.: Superpixel-based saliency detection. In: International Workshop on Image Analysis for Multimedia Interactive Services, pp. 1–4 (2013)
Murray, N., Vanrell, M., Otazu, X., Parraga, C.A.: Saliency estimation using a non-parametric low-level vision model. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 433–440 (2011)
Hou, X., Harel, J., Koch, C.: Image Signature: Highlighting sparse salient regions. IEEE Trans. on Pattern Analysis and Machine Intelligence 34(1), 194–201 (2012)
Margolin, R., Zelnik-Manor, L., Tal, A.: What makes a patch distinct? IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1139–1146 (2013)
Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.-H.: Saliency detection via graph-based manifold ranking. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 3166–3137 (2013)
Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 2814–2821 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mu, N., Xu, X. (2015). Superpixel-Based Global Contrast Driven Saliency Detection in Low Contrast Images. In: Zha, H., Chen, X., Wang, L., Miao, Q. (eds) Computer Vision. CCCV 2015. Communications in Computer and Information Science, vol 546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48558-3_41
Download citation
DOI: https://doi.org/10.1007/978-3-662-48558-3_41
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48557-6
Online ISBN: 978-3-662-48558-3
eBook Packages: Computer ScienceComputer Science (R0)