Skip to main content

Optimizing Camera Placement for Maximum Coverage of Simple Polygons with Holes: Deterministic Approaches and Swarm Intelligence Algorithms

  • Chapter
  • First Online:
Engineering Applications of AI and Swarm Intelligence

Abstract

This research paper addresses the challenge of optimal camera placement to achieve maximum coverage of a simple polygon with holes, a critical aspect in computer vision, the Internet of Things (IoT), and security systems. This problem, correlated with the art gallery problem, represents a fundamental computational geometry challenge. The paper focuses on identifying deterministic methods and applying swarm intelligence algorithms as practical approaches to solving this challenging problem. Deterministic methods provide precision and predictability, while swarm intelligence techniques enable global optimization through collective behavior. In addition to the theoretical overview, the paper presents experimental results demonstrating the success of the proposed methods in various camera placement scenarios. By integrating deterministic and swarm intelligence approaches, this paper improves understanding and practices in camera placement within complex environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adarsh B, Raghunathan T, Jayabarathi T, Yang XS (2016) Economic dispatch using chaotic bat algorithm. Energy 96:666–675. https://doi.org/10.1016/j.energy.2015.12.096

    Article  Google Scholar 

  2. Alihodzic A (2018) Training feed-forward neural networks employing improved bat algorithm for digital image compression. In: Lirkov I, Margenov S (eds) Large-Scale Scientific Computing. Springer International Publishing, Cham, pp 315–323

    Chapter  Google Scholar 

  3. Alihodzic A (2022) Statistical Measurements of Metaheuristics for Solving Engineering Problems, pp. 1–26. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-82397-9_1

  4. Alihodžić A, Chahin M, Čunjalo F (2022) New clustering techniques of node embeddings based on metaheuristic optimization algorithms. In: Lirkov I, Margenov S (eds) Large-Scale Scientific Computing. Springer International Publishing, Cham, pp 201–208

    Chapter  Google Scholar 

  5. Alihodzic A, Delalic S, Gusic D (2020) An effective integrated metaheuristic algorithm for solving engineering problems. In: 2020 15th Conference on Computer Science and Information Systems (FedCSIS), pp. 207–214. https://doi.org/10.15439/2020F81

  6. Alihodzic A, Delalic S, Hasic D (2020) An exact two-phase method for optimal camera placement in art gallery problem. In: 2020 15th Conference on Computer Science and Information Systems (FedCSIS), pp. 215–222. https://doi.org/10.15439/2020F79

  7. Alihodzic A, Tuba E, Simian D, Tuba V, Tuba M (2018) Extreme learning machines for data classification tuning by improved bat algorithm. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. DOI https://doi.org/10.1109/IJCNN.2018.8489546

  8. Alihodzic A, Tuba E, Tuba M (2017) An upgraded bat algorithm for tuning extreme learning machines for data classification. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’17, p. 125-126. Association for Computing Machinery, New York, NY USA. https://doi.org/10.1145/3067695.3076088

  9. Alihodzic A, Tuba E, Tuba M (2023) Optimal parameters selection of support vector machines using bat algorithm. In: 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), pp. 1–5. https://doi.org/10.1109/ICECCME57830.2023.10252635

  10. Alihodzic A, Tuba M (2014) Improved bat algorithm applied to multilevel image thresholding. Scientific World Journal 2014(181767):1–16. https://doi.org/10.1155/2014/176718

    Article  Google Scholar 

  11. Alihodzic A, Tuba M (2014) Improved hybridized bat algorithm for global numerical optimization. In: 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, pp. 57–62. https://doi.org/10.1109/UKSim.2014.97

  12. Altahir AA, Asirvadam VS, Hamid NHB, Sebastian P, Saad NB, Ibrahim RB, Dass SC (2017) Optimizing visual surveillance sensor coverage using dynamic programming. IEEE Sens J 17(11):3398–3405

    Article  ADS  Google Scholar 

  13. AApornak A, Raissi S, Keramati A, Khalili-Damghani K, (2021) Optimizing human resource cost of an emergency hospital using multi-objective bat algorithm. Int J Healthc Manag 14(3):873–879. https://doi.org/10.1080/20479700.2019.1707415

  14. Arora A, Aggarwal K (2022) Detecting community structure in financial markets using the bat optimization algorithm. Int J Inf Technol Proj Manag 13(3):1–21. https://doi.org/10.4018/IJITPM.313421

    Article  CAS  Google Scholar 

  15. Badr YA, Wassif KT, Othman M (2021) Automatic clustering of dna sequences with intelligent techniques. IEEE Access 9:140686–140699. https://doi.org/10.1109/ACCESS.2021.3119560

    Article  Google Scholar 

  16. de Berg M, Cheong O, van Kreveld M, Overmars M (2008) Computational geometry: algorithms and applications, third edn. Springer, Berlin, Heidelberg. DOI https://doi.org/10.1007/978-3-540-77974-2

  17. Bhuiyan MZA, Wang G, Cao J, Wu J (2014) Sensor placement with multiple objectives for structural health monitoring. ACM Trans Sen Netw. https://doi.org/10.1145/2533669

    Article  Google Scholar 

  18. Bhuiyan MZA, Wang G, Cao J, Wu J (2015) Deploying wireless sensor networks with fault-tolerance for structural health monitoring. IEEE Trans Comput 64(2):382–395

    Article  MathSciNet  Google Scholar 

  19. Bjorling-Sachs I, Souvaine DL (1995) An efficient algorithm for guard placement in polygons with holes. Discrete & Computational Geometry 13:77–109. https://doi.org/10.1007/BF02574029

    Article  MathSciNet  Google Scholar 

  20. Bodor R, Drenner A, Schrater P, Papanikolopoulos N (2007) Optimal camera placement for automated surveillance tasks. J Intell Rob Syst 50(3):257–295. https://doi.org/10.1007/s10846-007-9164-7

    Article  Google Scholar 

  21. Chowdhury A, Rakshit P, Konar A, Nagar AK (2014) A modified bat algorithm to predict protein-protein interaction network. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1046–1053. https://doi.org/10.1109/CEC.2014.6900518

  22. Chrysostomou D, Gasteratos A (2012) Optimum multi-camera arrangement using a bee colony algorithm. In: 2012 IEEE International Conference on Imaging Systems and Techniques Proceedings, pp. 387–392. https://doi.org/10.1109/IST.2012.6295580

  23. Chvátal V (1975) A combinatorial theorem in plane geometry. Journal of Combinatorial Theory, Series B 18(1):39–41. https://doi.org/10.1016/0095-8956(75)90061-1

    Article  MathSciNet  Google Scholar 

  24. De Floriani L, Puppo E (1992) An on-line algorithm for constrained delaunay triangulation. CVGIP: Graphical Models and Image Processing 54(4):290–300. https://doi.org/10.1016/1049-9652(92)90076-A

    Article  Google Scholar 

  25. Delalić S, Alihodžić A, Tuba M, Selmanović E, Hasić D (2020) Discrete bat algorithm for event planning optimization. In: 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), pp. 1085–1090. https://doi.org/10.23919/MIPRO48935.2020.9245276

  26. Delalić S, Žunić E, Alihodžić A, Selmanović E (2021) A discrete bat algorithm for the rich vehicle routing problem. In: 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), pp. 1058–1063. https://doi.org/10.23919/MIPRO52101.2021.9597108

  27. dos Santos Coelho L, Askarzadeh A (2016) An enhanced bat algorithm approach for reducing electrical power consumption of air conditioning systems based on differential operator. Applied Thermal Engineering 99:834–840 https://doi.org/10.1016/j.applthermaleng.2016.01.155. URL https://www.sciencedirect.com/science/article/pii/S1359431116301077

  28. Elnagar A, Lulu L (2005) An art gallery-based approach to autonomous robot motion planning in global environments. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2079–2084. https://doi.org/10.1109/IROS.2005.1545170

  29. Feng G, Liu M, Guo X, Zhang J, Wang G (2011) Genetic algorithm based optimal placement of pir sensor arrays for human localization. In: 2011 IEEE International Conference on Mechatronics and Automation, pp. 1080–1084. https://doi.org/10.1109/ICMA.2011.5985810

  30. Feng J, Kuang H, Zhang L (2022) Ebba: an enhanced binary bat algorithm integrated with chaos theory and lévy flight for feature selection. Future Internet 14(6). https://doi.org/10.3390/fi14060178

  31. Fisk S (1978) A short proof of chvátal’s watchman theorem. J Comb Theory, Ser B 24(3):374. https://doi.org/10.1016/0095-8956(78)90059-X

    Article  Google Scholar 

  32. Gandomi AH, Yang XS, Alavi AH, Talatahari S (2013) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22:1239–1255. https://doi.org/10.1007/s00521-012-1028-9

    Article  Google Scholar 

  33. Ghanem WAHM, Jantan A (2019) An enhanced bat algorithm with mutation operator for numerical optimization problems. Neural Comput Appl 31(1):617–651. https://doi.org/10.1007/s00521-017-3021-9

    Article  Google Scholar 

  34. Gonzalez-Barbosa J, Garcia-Ramirez T, Salas J, Hurtado-Ramos J, Rico-Jimenez J (2009) Optimal camera placement for total coverage. In: 2009 IEEE International Conference on Robotics and Automation, pp. 844–848

    Google Scholar 

  35. Hoffmann F, Kaufmann M, Kriegel K (1991) The art gallery theorem for polygons with holes. In: [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science, pp. 39–48. DOI https://doi.org/10.1109/SFCS.1991.185346

  36. Islam SH, Vijayakumar P, Bhuiyan MZA, Amin R, Rajeev MV, Balusamy B (2018) A provably secure three-factor session initiation protocol for multimedia big data communications. IEEE Int Things J 5(5):3408–3418. https://doi.org/10.1109/JIOT.2017.2739921

    Article  Google Scholar 

  37. Kamkar S, Ghezloo F, Moghaddam HA, Borji A, Lashgari R (2020) Multiple-target tracking in human and machine vision. PLoS Comput Biol 16(4):1–28. https://doi.org/10.1371/journal.pcbi.1007698

    Article  CAS  Google Scholar 

  38. Katz MJ, Roisman GS (2008) On guarding the vertices of rectilinear domains. Comput Geom 39(3):219–228. https://doi.org/10.1016/j.comgeo.2007.02.002

    Article  MathSciNet  Google Scholar 

  39. Kora P, Krishna KSR (2016) Ecg based heart arrhythmia detection using wavelet coherence and bat algorithm. Sens Imag 17(1):1–16. https://doi.org/10.1007/s11220-016-0136-5

    Article  Google Scholar 

  40. Lee D, Lin A (1986) Computational complexity of art gallery problems. IEEE Trans Inf Theory 32(2):276–282. https://doi.org/10.1109/TIT.1986.1057165

    Article  MathSciNet  Google Scholar 

  41. Li G, Xu H, Lin Y (2018) Application of bat algorithm based time optimal control in multi-robots formation reconfiguration. J Bionic Eng 15(1):126–138. https://doi.org/10.1007/s42235-017-0010-8

    Article  ADS  Google Scholar 

  42. Liu J, Fookes C, Wark T, Sridharan S (2012) On the statistical determination of optimal camera configurations in large scale surveillance networks. In: Computer Vision – ECCV 2012, pp. 44–57. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33718-5_4

  43. Lu S, Wang SH, Zhang YD (2021) Detection of abnormal brain in mri via improved alexnet and elm optimized by chaotic bat algorithm. Neural Comput Appl 33(17):10799–10811. https://doi.org/10.1007/s00521-020-05082-4

    Article  Google Scholar 

  44. Nithya B, Jeyachidra J (2021) Optimized anchor based localization using bat optimization algorithm for heterogeneous wsn. In: 2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), pp. 1–6. https://doi.org/10.1109/ICSES52305.2021.9633947

  45. Ochoa A, Margain L, Hernández A, Ponce J, De Luna A, Hernández A, Castillo O (2013) Bat algorithm to improve a financial trust forest. In: 2013 World Congress on Nature and Biologically Inspired Computing, pp. 58–62. https://doi.org/10.1109/NaBIC.2013.6617838

  46. O’Rourke J, Supowit K (1983) Some np-hard polygon decomposition problems. IEEE Trans Inf Theory 29(2):181–190. https://doi.org/10.1109/TIT.1983.1056648

    Article  MathSciNet  Google Scholar 

  47. Osaba E, Yang XS, Diaz F, Lopez-Garcia P, Carballedo R (2016) An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems. Eng Appl Artif Intell 48:59–71. https://doi.org/10.1016/j.engappai.2015.10.006

    Article  Google Scholar 

  48. Pourhadi A, Mahdavi-Nasab H (2020) A robust digital image watermarking scheme based on bat algorithm optimization and surf detector in swt domain. Multimedia Tools Appl 79(29–30):21653–21677. https://doi.org/10.1007/s11042-020-08960-0

    Article  Google Scholar 

  49. Rauf HT, Gao J, Almadhor A, Arif M, Nafis MT (2021) Retracted article: enhanced bat algorithm for covid-19 short-term forecasting using optimized lstm. Soft Comput 17(1):12989–12999. https://doi.org/10.1007/s00500-021-06075-8

    Article  Google Scholar 

  50. Rizk-Allah RM, Hassanien AE (2018) New binary bat algorithm for solving 0–1 knapsack problem. Complex & Intelligent Systems 4:31–53. https://doi.org/10.1007/s40747-017-0050-z

    Article  Google Scholar 

  51. Satapathy SC, Raja NSM, Rajinikanth V, Ashour AS, Dey N (2018) Multi-level image thresholding using otsu and chaotic bat algorithm. Neural Comput Appl 29(2):1285–1307. https://doi.org/10.1007/s00521-016-2645-5

    Article  Google Scholar 

  52. Schuchardt D, Hecker H (1995) Two np-hard art-gallery problems for ortho-polygons. Math Log Q 41(2):261–267. https://doi.org/10.1002/malq.19950410212

    Article  MathSciNet  Google Scholar 

  53. Senthilnath J, Kulkarni S, Benediktsson JA, Yang XS (2016) A novel approach for multispectral satellite image classification based on the bat algorithm. IEEE Geosci Remote Sens Lett 13(4):599–603. https://doi.org/10.1109/LGRS.2016.2530724

    Article  ADS  Google Scholar 

  54. Shehab M, Abu-Hashem MA, Shambour MKY, Alsalibi AI, Alomari OA, Gupta JND, Alsoud AR, Abuhaija B, Abualigah L (2023) A comprehensive review of bat inspired algorithm: variants, applications, and hybridization. Arch Comput Method Eng 30(2):765–797. https://doi.org/10.1007/s11831-022-09817-5

    Article  Google Scholar 

  55. Trivedi IN, Bhoye M, Jangir P, Parmar SA, Jangir N, Kumar A (2016) Voltage stability enhancement and voltage deviation minimization using bat optimization algorithm. In: 2016 3rd International Conference on Electrical Energy Systems (ICEES), pp. 112–116. https://doi.org/10.1109/ICEES.2016.7510626

  56. Tuba E, Tuba M, Simian D (2016) Adjusted bat algorithm for tuning of support vector machine parameters. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 2225–2232. https://doi.org/10.1109/CEC.2016.7744063

  57. Tuba M, Alihodzic A, Bacanin N (2015) Cuckoo Search and Bat Algorithm Applied to Training Feed-Forward Neural Networks, pp. 139–162. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-13826-8_8

  58. Tuba M, Jordanski M, Arsic A (2016) Chapter 4 - improved weighted thresholded histogram equalization algorithm for digital image contrast enhancement using the bat algorithm. In: X.S. Yang, J.P. Papa (eds.) Bio-Inspired Computation and Applications in Image Processing, pp. 61–86. Academic Press.https://doi.org/10.1016/B978-0-12-804536-7.00004-1. URL https://www.sciencedirect.com/science/article/pii/B9780128045367000041

  59. Wang T, Zeng J, Bhuiyan MZA, Chen Y, Cai Y, Tian H, Xie M (2018) Energy-efficient relay tracking with multiple mobile camera sensors. Comput Netw 133:130–140. https://doi.org/10.1016/j.comnet.2018.01.002

    Article  CAS  Google Scholar 

  60. Wang X, Zhang H, Gu H (2020) Solving optimal camera placement problems in iot using lh-rpso. IEEE Access 8:40881–40891

    Article  Google Scholar 

  61. Xie J, Zhou Y, Zheng H (2013) A hybrid metaheuristic for multiple runways aircraft landing problem based on bat algorithm. J Appl Math 2013:1–8. https://doi.org/10.1155/2013/742653

    Article  Google Scholar 

  62. Yang XS (2010) A new metaheuristic bat-inspired algorithm, pp. 65–74. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12538-6_6

  63. Yang XS (2021) Nature-Inspired Optimization Algorithms. 2nd Edition. Academic Press

    Google Scholar 

  64. Yao Y, Chen C, Abidi B, Page D, Koschan A, Abidi M (2010) Can you see me now? sensor positioning for automated and persistent surveillance. IEEE Trans Syst Man Cybern Part B (Cybernetics) 40(1):101–115. https://doi.org/10.1109/TSMCB.2009.2017507

    Article  Google Scholar 

  65. Zhao J, Cheung S, Nguyen T (2008) Optimal camera network configurations for visual tagging. IEEE J Sel Top Sign Proc 2(4):464–479

    Article  Google Scholar 

  66. Zhou X, Gao F, Fang X, Lan Z (2021) Improved bat algorithm for uav path planning in three-dimensional space. IEEE Access 9:20100–20116. https://doi.org/10.1109/ACCESS.2021.3054179

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adis Alihodzic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alihodzic, A., Tuba, E., Tuba, M. (2025). Optimizing Camera Placement for Maximum Coverage of Simple Polygons with Holes: Deterministic Approaches and Swarm Intelligence Algorithms. In: Yang, XS. (eds) Engineering Applications of AI and Swarm Intelligence. Springer Tracts in Nature-Inspired Computing. Springer, Singapore. https://doi.org/10.1007/978-981-97-5979-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5979-8_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5978-1

  • Online ISBN: 978-981-97-5979-8

  • eBook Packages: Artificial Intelligence (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy