Skip to main content

Evolutionary Clustering and Community Detection

  • Chapter
  • First Online:
Handbook of Evolutionary Machine Learning

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

  • 2486 Accesses

Abstract

This chapter provides a formal definition of the problem of cluster analysis, and the related problem of community detection in graphs. Building on the mathematical definition of these problems, we motivate the use of evolutionary computation in this setting. We then review previous work on this topic, highlighting key approaches regarding the choice of representation and objective functions, as well as regarding the final process of model selection. Finally, we discuss successful applications of evolutionary clustering and the steps we consider necessary to encourage the uptake of these techniques in mainstream machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Cluster validity indices can be external or internal, depending on whether or not they depend on knowledge of the correct partition (ground truth) to determine solution quality.

References

  1. Aljarah, I., Faris, H., Mirjalili, S.: Evolutionary data clustering: Algorithms and applications. Springer, Berlin (2021)

    Google Scholar 

  2. Aljarah, I., Habib, M., Nujoom, R., Faris, H., Mirjalili, S.: A comprehensive review of evaluation and fitness measures for evolutionary data clustering. In: Aljarah, I., Faris, H., Mirjalili, S. (eds.) Evolutionary Data Clustering: Algorithms and Applications, pp. 23–71. Springer Singapore, Singapore (2021)

    Chapter  Google Scholar 

  3. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J.M., Perona, I.: An extensive comparative study of cluster validity indices. Pattern Recogn. 46(1), 243–256 (2013)

    Article  Google Scholar 

  4. Bandyopadhyay, S., Maulik, U.: Genetic clustering for automatic evolution of clusters and application to image classification. Pattern Recogn. 35(6), 1197–1208 (2002)

    Article  MATH  Google Scholar 

  5. Bandyopadhyay, S., Mukhopadhyay, A., Maulik, U.: An improved algorithm for clustering gene expression data. Bioinformatics 23(21), 2859 (2007)

    Article  Google Scholar 

  6. Bayá, A.E., Granitto, P.M.: How many clusters: a validation index for arbitrary-shaped clusters. IEEE/ACM Trans. Comput. Biol. Bioinf. 10(2), 401–414 (2013)

    Article  Google Scholar 

  7. Caballero, R., Laguna, M., Martí, R., Molina, J.: Scatter Tabu search for multiobjective clustering problems. J. Oper. Res. Soc. 62(11), 2034–2046 (2011)

    Article  Google Scholar 

  8. Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021)

    Article  Google Scholar 

  9. Davidson, I., Ravi, S.S.: Clustering with constraints: Feasibility issues and the k-means algorithm. In: Proceedings of the 2005 SIAM International Conference on Data Mining, pp. 138–149. SIAM (2005)

    Google Scholar 

  10. Deb, K., Gupta, S.: Understanding knee points in bicriteria problems and their implications as preferred solution principles. Eng. Optim. 43(11), 1175–1204 (2011)

    Article  MathSciNet  Google Scholar 

  11. Falkenauer, E.: Genetic Algorithms and Grouping Problems. Wiley Ltd, Chichester (1998)

    MATH  Google Scholar 

  12. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  13. Fred, A.L.N., Jain, A.K.: Combining multiple clusterings using evidence accumulation. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 835–850 (2005)

    Article  Google Scholar 

  14. Garcia-Piquer, A., Bacardit, J., Fornells, A., Golobardes, E.: Scaling-up multiobjective evolutionary clustering algorithms using stratification. Pattern Recogn. Lett. 93, 69–77 (2017)

    Article  Google Scholar 

  15. Garcia-Piquer, A., Sancho-Asensio, A., Fornells, A., Golobardes, E., Corral, G., Teixidó-Navarro, F.: Toward high performance solution retrieval in multiobjective clustering. Inf. Sci. 320, 12–25 (2015)

    Article  MathSciNet  Google Scholar 

  16. Garza-Fabre, M., Handl, J., Knowles, J.: A new reduced-length genetic representation for evolutionary multiobjective clustering. In: Trautmann, H., Rudolph, G., Klamroth, K., Schütze, O., Wiecek, M., Jin, Y., Grimme, C. (eds.) Evolutionary Multi-Criterion Optimization, pp. 236–251. Springer International Publishing, Münster (2017)

    Chapter  Google Scholar 

  17. Garza-Fabre, M., Handl, J., Knowles, J.: An improved and more scalable evolutionary approach to multiobjective clustering. IEEE Trans. Evol. Comput. 22(4), 515–535 (2018)

    Article  Google Scholar 

  18. Garza-Fabre, M., Handl, J., José-García, A.: Evolutionary multi-objective clustering over multiple conflicting data views. IEEE Trans. Evolut, Comput (2022)

    Google Scholar 

  19. Garza-Fabre, M., Sánchez-Martínez, A.L., Aldana-Bobadilla, E., Landa, R.: Decision making in evolutionary multiobjective clustering: a machine learning challenge. IEEE Access 1–22 (2022)

    Google Scholar 

  20. Gharehchopogh, F.S., Abdollahzadeh, B., Khodadadi, N., Mirjalili, S.: Chapter 20 - metaheuristics for clustering problems. In: Mirjalili, S., Gandomi, A.H. (eds.), Comprehensive Metaheuristics, pp. 379–392. Academic (2023)

    Google Scholar 

  21. Golalipour, K., Akbari, E., Hamidi, S.S., Lee, M., Enayatifar, R.: From clustering to clustering ensemble selection: a review. Eng. Appl. Artif. Intell. 104, 104388 (2021)

    Article  Google Scholar 

  22. Gong, C., Chen, H., He, W., Zhang, Z.: Improved multi-objective clustering algorithm using particle swarm optimization. PLoS ONE 12(12), e0188815 (2017)

    Article  Google Scholar 

  23. Gupta, A., Datta, S., Das, S.: Fuzzy clustering to identify clusters at different levels of fuzziness: an evolutionary multiobjective optimization approach. IEEE Trans. Cybern. 51, 2601–2611 (2021)

    Article  Google Scholar 

  24. Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. IEEE Trans. Evol. Comput. 11(1), 56–76 (2007)

    Article  Google Scholar 

  25. Handl, J., Knowles, J.: Evidence accumulation in multiobjective data clustering. In: International Conference on Evolutionary Multi-Criterion Optimization, pp. 543–557. Springer (2013)

    Google Scholar 

  26. Handl, J., Knowles, J., Kell, D.B.: Computational cluster validation in post-genomic data analysis. Bioinformatics 21(15), 3201–3212 (2005)

    Article  Google Scholar 

  27. Handl, J., Ospina-Forero, L., Cann, T.: Multi-objective community detection for bipartite graphs. Under Submission (2022)

    Google Scholar 

  28. Hansen, P., Jaumard, B.: Minimum sum of diameters clustering. J. Classif. 4(2), 215–226 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. He, Z., Yen, G.G., Ding, J.: Knee-based decision making and visualization in many-objective optimization. IEEE Trans. Evol. Comput. 25(2), 292–306 (2021)

    Article  Google Scholar 

  30. Hruschka, E.R., Campello, R.J.G.B., Freitas, A.A., Ponce, A.C., de Carvalho, L.F.: A survey of evolutionary algorithms for clustering. IEEE Trans. Syst., Man, Cybern., Part C (Appl. Rev.) 39(2), 133–155 (2009)

    Google Scholar 

  31. Ikotun, A.M., Ezugwu, A.E., Abualigah, L., Abuhaija, B., Heming, J.: K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. 622, 178–210 (2023)

    Article  Google Scholar 

  32. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short review. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 2419–2426. IEEE (2008)

    Google Scholar 

  33. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  34. José-García, A., Gómez-Flores, W.: Automatic clustering using nature-inspired metaheuristics: a survey. Appl. Soft Comput. 41, 192–213 (2016)

    Article  Google Scholar 

  35. José-García, A., Gómez-Flores, W.: A survey of cluster validity indices for automatic data clustering using differential evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’21, pp. 314–322. ACM, New York (2021)

    Google Scholar 

  36. José-García, A., Handl, J., Gómez-Flores, W., Garza-Fabre, M.: An evolutionary many-objective approach to multiview clustering using feature and relational data. Appl. Soft Comput. 108, 107425 (2021)

    Article  Google Scholar 

  37. Liu, Y., Özyer, T., Alhajj, R., Barker, K.: Integrating multi-objective genetic algorithm and validity analysis for locating and ranking alternative clustering. Informatica 29, 33–40 (2005)

    MATH  Google Scholar 

  38. MacQueen, J.: Classification and analysis of multivariate observations. In: 5th Berkeley Symposium Mathematics Statistics Probability, pp. 281–297 (1967)

    Google Scholar 

  39. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press (1967)

    Google Scholar 

  40. Malinen, M.I., Fränti, P.: Balanced k-means for clustering. In: Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), pp. 32–41. Springer (2014)

    Google Scholar 

  41. Martínez-Peñaloza, M.-G., Mezura-Montes, E., Cruz-Ramírez, N., Acosta-Mesa, H.-G., Ríos-Figueroa, H.-V.: Improved multi-objective clustering with automatic determination of the number of clusters. Neural Comput. Appl. 28, 2255–2275 (2017)

    Article  Google Scholar 

  42. Matake, N., Hiroyasu, T., Miki, M., Senda, T.: Multiobjective clustering with automatic K-determination for large-scale data. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO ’07, pp. 861–868. ACM, London (2007)

    Google Scholar 

  43. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S.: Multiobjective genetic algorithm-based fuzzy clustering of categorical attributes. IEEE Trans. Evol. Comput. 13(5), 991–1005 (2009)

    Article  Google Scholar 

  44. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S.: Multiobjective genetic clustering with ensemble among pareto front solutions: application to MRI brain image segmentation. In: 2009 Seventh International Conference on Advances in Pattern Recognition, pp. 236–239 (2009)

    Google Scholar 

  45. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S.: A survey of multiobjective evolutionary clustering. ACM Comput. Surv. 47(4) (2015)

    Google Scholar 

  46. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  47. Osaba, E., Del Ser, J., Camacho, D., Bilbao, M.N., Yang, X.S.: Community detection in networks using bio-inspired optimization: latest developments, new results and perspectives with a selection of recent meta-heuristics. Appl. Soft Comput. 87, 106010 (2020)

    Article  Google Scholar 

  48. Özyer, T., Liu, Y., Alhajj, R., Barker, K.: Multi-objective genetic algorithm based clustering approach and its application to gene expression data. In: Yakhno, T. (ed.) Advances in Information Systems, pp. 451–461. Springer, Berlin (2005)

    Google Scholar 

  49. Park, Y.J., Song, M.S.: A genetic algorithm for clustering problems. In: Genetic Programming, pp. 568–575. Morgan Kaufmann, Madison (1998)

    Google Scholar 

  50. Pizzuti, C.: Ga-net: a genetic algorithm for community detection in social networks. In: International Conference on Parallel Problem Solving from Nature, pp. 1081–1090. Springer (2008)

    Google Scholar 

  51. Pizzuti, C.: Evolutionary computation for community detection in networks: a review. IEEE Trans. Evol. Comput. 22(3), 464–483 (2018)

    Article  Google Scholar 

  52. Qian, X., Zhang, X., Jiao, L., Ma, W.: Unsupervised texture image segmentation using multiobjective evolutionary clustering ensemble algorithm. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 3561–3567 (2008)

    Google Scholar 

  53. Rothlauf, F.: Representations for genetic and evolutionary algorithms, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  54. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  55. Saha, S., Mitra, S., Kramer, S.: Exploring multiobjective optimization for multiview clustering. ACM Trans. Knowl. Discov. Data 12(4), 44:1–44:30 (2018)

    Google Scholar 

  56. Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O.P., Tiwari, A., Er, M.J., Ding, W., Lin, C.T.: A review of clustering techniques and developments. Neurocomputing 267, 664–681 (2017)

    Article  Google Scholar 

  57. Shirakawa, S., Nagao, T.: Evolutionary image segmentation based on multiobjective clustering. In: IEEE Congress on Evolutionary Computation, pp. 2466–2473 (2009)

    Google Scholar 

  58. Shukla, P.K., Braun, M.A., Schmeck, H.: Theory and algorithms for finding knees. In: International Conference on Evolutionary Multi-Criterion Optimization, pp. 156–170. Springer (2013)

    Google Scholar 

  59. Talbi, E.G.: Metaheuristics from design to implementation. Wiley (2009)

    Google Scholar 

  60. Thorndike, R.L.: Who belongs in the family. In: Psychometrika. Citeseer (1953)

    Google Scholar 

  61. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 63(2), 411–423 (2001)

    Google Scholar 

  62. Wahid, A., Gao, X., Andreae, P.: Multi-view clustering of web documents using multi-objective genetic algorithm. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2625–2632. IEEE, Beijing (2014)

    Google Scholar 

  63. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  64. Zhou, K., Martin, A., Pan, Q.: A similarity-based community detection method with multiple prototype representation. Phys. A 438, 519–531 (2015)

    Article  Google Scholar 

  65. Zhu, S., Lihong, X., Goodman, E.D.: Evolutionary multi-objective automatic clustering enhanced with quality metrics and ensemble strategy. Knowl.-Based Syst. 188, 105018 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Handl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Handl, J., Garza-Fabre, M., José-García, A. (2024). Evolutionary Clustering and Community Detection. In: Banzhaf, W., Machado, P., Zhang, M. (eds) Handbook of Evolutionary Machine Learning. Genetic and Evolutionary Computation. Springer, Singapore. https://doi.org/10.1007/978-981-99-3814-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3814-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3813-1

  • Online ISBN: 978-981-99-3814-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy