Abstract
Fe3+ and XFe3+, defined as Fe3+/(Fe2+ + Fe3+) on a molar basis, are now recognised as key parameters in phase equilibrium modelling. A hindrance is that it is only possible to routinely measure total Fe, and not Fe3+ and Fe2+, in minerals using the electron microprobe. Charge balance techniques can be used to estimate Fe3+ and Fe2+ for some minerals, but not for those that contain vacancies. Whilst other analytical techniques can determine XFe3+ in minerals, these are not commonly applied by metamorphic petrologists. Therefore, researchers must rely on estimates. This study collates wet chemical, Mössbauer spectroscopy, and X-ray absorption near edge structure (XANES) spectroscopy analyses of XFe3+ in metapelitic minerals and rocks from the literature. The resulting database of 77 studies contains 591 samples, of which 261 have XFe3+ determined for the whole rock. There are XFe3+ measurements for 483 biotites, 192 white micas, 78 chlorites, and 32 staurolites. Average (± 1σ) XFe3+ values in whole rock, biotite, white mica, chlorite, and staurolite are 0.23 ± 0.16, 0.11 ± 0.08, 0.55 ± 0.18, 0.08 ± 0.07, and 0.07 ± 0.06, respectively. The average (± 1σ) number of Fe3+ cations in biotite, white mica, chlorite, and staurolite is 0.28 ± 0.19 (22 O + Ti cations per formula unit, pfu), 0.17 ± 0.13 (22 O pfu), 0.31 ± 0.27 (28 O pfu), and 0.20 ± 0.17 (46 O pfu), respectively. The mean whole rock XFe3+ is similar for metapelites containing ilmenite and magnetite, as well as those that report no Fe-oxide, but is considerably higher for hematite-bearing rocks. Whilst there is little variation with pressure and temperature, there is an increase in the number of Fe3+ cations and XFe3+ of both white mica and biotite with the type of Fe-oxide present. Our observations are compared with the predictions of phase equilibrium modelling using thermodynamic dataset 6.2 (Holland and Powell, J Metamorph Geol 29:333–383, 2011) and the solution models of White et al. (J Metamorph Geol 32:261–286, 2014a) for Fe3+ and XFe3+ in these minerals. The predicted XFe3+ and number of Fe3+ cations in biotite, chlorite, and staurolite broadly match natural observations, but for white mica the predicted mean XFe3+ is underestimated by 0.2–0.4 and the number of Fe3+ cations by 0.05–0.2. Whilst modelling correctly predicted increases in the XFe3+ of white mica and biotite with whole rock XFe3+, it also predicted variations in mineral XFe3+ as a function of pressure and temperature which are not observed in the natural samples.
Similar content being viewed by others
Availability of data and materials
Not applicable.
Code availability
Not applicable.
References
Ague JJ (1991) Evidence for major mass transfer and volume strain during regional metamorphism of pelites. Geology 19:855–858. https://doi.org/10.1130/0091-7613(1991)019<0855:EFMMTA>2.3.CO;2
Ague JJ, Baxter EF, Eckert JO (2001) High fO2 during sillimanite zone metamorphism of part of the Barrovian type locality, Glen Clova, Scotland. J Petrol 42:1301–1320. https://doi.org/10.1093/petrology/42.7.1301
Albee AL (1965) Phase equilibria in three assemblages of kyanite-zone pelitic schists, Lincoln Mountain quadrangle, central Vermont. J Petrol 6:246–301. https://doi.org/10.1093/petrology/6.2.246
Atherton MP (1968) The variation in garnet, biotite and chlorite composition in medium grade pelitic rocks from the Dalradian, Scotland, with particular reference to the zonation in garnet. Contrib Mineral Petrol 18:347–371. https://doi.org/10.1007/BF00399696
Atherton MP, Brotherton MS (1982) Major element composition of the pelites of the Scottish Dalradian. Geol J 17:185–221. https://doi.org/10.1002/gj.3350170303
Bajt S, Sutton SR, Delaney JS (1994) X-ray microprobe analysis of iron oxidation states in silicates and oxides using X-ray absorption near edge structure (XANES). Geochim Cosmochim Acta 58:5209–5214. https://doi.org/10.1016/0016-7037(94)90305-0
Bancroft GM, Brown JR (1975) A Mössbauer study of coexisting hornblendes and biotites: ratios quantitative Fe3+/Fe2+. Am Mineral 60:265–272
Banno S (1964) Petrologic studies on Sanbagawa crsystalline schists in the Bessi-ino District, Central Sikoku, Japan. J Fac Sci Univ Tokyo Sec 2 15:203–319
Barker F (1962) Cordierite-garnet gneiss and associated microcline-rich pegmatite at Sturbridge, Massachusetts and Union, Connecticut. Am Mineral 47:907–918
Barth TFW (1936) Structural and petrologic studies in Dutchess County, New York: Part II. Petrology and metamorphism of the Paleozoic rocks. Bull Geol Soc Am 47:775–850. https://doi.org/10.1130/GSAB-47-775
Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO- FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J Petrol 29:445–522.
Best MG, Weiss LE (1964) Mineralogical relations in some pelitic hornfelses from the southern Sierra Nevada, California. Am Mineral 49:1240–1266
Blackburn WH (1967) The spatial degree of chemical equilibrium in some high grade metamorphic rocks. Doctoral thesis, Massachusetts Institute of Technology
Boger SD, White RW, Schulte B (2012) The importance of iron speciation (Fe+2/Fe+3) in determining mineral assemblages: an example from the high-grade aluminous metapelites of southeastern Madagascar. J Metamorph Geol 30:997–1018. https://doi.org/10.1111/jmg.12001
Butler BCM (1965) A chemical study of some rocks of the Moine Series of Scotland. Q J Geol Soc 121:163–208. https://doi.org/10.1144/gsjgs.121.1.0163
Butler BCM (1967) Chemical Study of Minerals from the Moine Schists of the Ardnamurchan Area, Argyllshire, Scotland. J Petrol 8:233–267. https://doi.org/10.1093/petrology/8.2.233
Card KD (1964) Metamorphism in the Agnew Lake Area, Sudbury District, Ontario, Canada. Geol Soc Am Bull 75:1011–1030. https://doi.org/10.1130/0016-7606(1964)75[1011:MITALA]2.0.CO;2
Carmichael DM, Moore JM, Skippen GB (1978) Isograds around the Hastings metamorphic “low,”. In: Mackasey AL, Currie WO (eds) Toronto ’78 Field Trips Guidebook—Geological Association of Canada–Geological Association of America Combined Meeting, pp 325–346
Cesare B, Cruciani G, Russo U (2003) Hydrogen deficiency in Ti-rich biotite from anatectic metapelites (El Joyazo, SE Spain): Crystal-chemical aspects and implications for high-temperature petrogenesis. Am Mineral 88:583–595. https://doi.org/10.2138/am-2003-0412
Cesare B, Meli S, Nodari L, Russo U (2005) Fe3+ reduction during biotite melting in graphitic metapelites: another origin of CO2 in granulites. Contrib Mineral Petrol 149:129–140. https://doi.org/10.1007/s00410-004-0646-3
Chakraborty KR, Sen SK (1967) Regional metamorphism of pelitic rocks around Kandra, Singhbhum, Bihar. Contrib Mineral Petrol 16:210–232. https://doi.org/10.1007/BF00371093
Chinner GA (1960) Pelitic gneisses with varying ferrous/ferric ratios from Glen Clova, Angus, Scotland. J Petrol 1:178–217. https://doi.org/10.1093/petrology/1.1.178
Chinner GA (1962) Almandine in thermal aureoles. J Petrol 3:316–341. https://doi.org/10.1093/petrology/3.3.316
Chinner GA (1965) The kyanite isograd in Glen Clova, Angus, Scotland. Mineral Mag 34:132–143. https://doi.org/10.1180/minmag.1965.034.268.11
Coggon R, Holland TJB (2002) Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J Metamorph Geol 20:683–696. https://doi.org/10.1046/j.1525-1314.2002.00395.x
Crameri F (2021) Scientific colour maps. https://doi.org/10.5281/zenodo.4491293
Crameri F, Shephard GE, Heron PJ (2020) The misuse of colour in science communication. Nat Commun 11:1–10. https://doi.org/10.1038/s41467-020-19160-7
Dallmeyer RD (1974) Metamorphic history of the Northeastern Reading Prong, New York and Northern New Jersey. J Petrol 15:325–359. https://doi.org/10.1093/petrology/15.2.325
Das BK (1973) Petrochemical study of pelitic schists and coexisting minerals of lower Kumaon Himalaya. Neues Jahrb Für Mineral Monatshefte 12:547–563
De Capitani C, Brown TH (1987) The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochim Cosmochim Acta 51:2639–2652. https://doi.org/10.1016/0016-7037(87)90145-1
De Capitani C, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Mineral 95:1006–1016. https://doi.org/10.2138/am.2010.3354
Deer WA, Howie RA, Zussman J (2013) An introduction to the rock-forming minerals, 3rd edn. Longman Group Limited. https://doi.org/10.1180/DHZ
Delaney JS, Bajt S, Sutton SR, Dyar MD (1996) In situ microanalysis of Fe3+/ΣFe ratios in amphibole by X-ray Absorption near edge structure (XANES) spectroscopy. Geochem Soc Spec Publ 5. pp 170–177
Delaney JS, Dyar MD, Steven SR, Bajt S (1998) Redox ratios with relevant resolution: solving an old problem by using the synchrotron microXANES probe. Geology 26:139–142. https://doi.org/10.1130/0091-7613(1998)026%3c0139:RRWRRS%3e2.3.CO;2
Dempster TJ (1983) Studies of orogenic evolution in the Scottish Dalradian. Doctoral thesis, University of Edinburgh
Diener JFA, Powell R (2010) Influence of ferric iron on the stability of mineral assemblages. J Metamorph Geol 28:599–613. https://doi.org/10.1111/j.1525-1314.2010.00880.x
Dodge FCW, Smith VC, Mays RE (1969) Biotites from granitic rocks of the Central Sierra Nevada Batholith, California. J Petrol 10:250–271. https://doi.org/10.1093/petrology/10.2.250
Dougan TW (1974) Cordierite gneisses and associated lithologies of the Guri area, Northwest Guayana Shield, Venezuela. Contrib Mineral Petrol 46:169–188. https://doi.org/10.1007/BF00487554
Doukkari SA, Diener JFA, Ouzegane K, Kienast J-R (2018) Mineral equilibrium modelling and calculated chemical potential relations of reaction textures in the ultrahigh-temperature In Ouzzal terrane (In Hihaou area, Western Hoggar, Algeria). J Metamorph Geol. https://doi.org/10.1111/jmg.12441
Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51:431–435. https://doi.org/10.1180/minmag.1987.051.361.10
Dyar MD (1990) Mössbauer spectra of biotite from metapelites. Am Mineral 75:656–666
Dyar MD (1993) Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas. Discussion 78:669–671
Dyar MD, Burns RB (1986) Mössbauer spectral study of ferruginous one-layer trioctahedral micas. Am Mineral 71:955–965
Dyar MD, Perry CL, Rebbert CR, Dutrow BL, Holdaway MJ, Lang HM (1991) Mössbauer spectroscopy of synthetic and naturally occurring staurolite. Am Mineral 76:27–41
Dyar MD, Guidotti CV, Holdaway MJ, Colucci M (1993a) Nonstoichiometric hydrogen contents in common rock-forming hydroxyl silicates. Geochim Cosmochim Acta 57:2913–2918. https://doi.org/10.1016/0016-7037(93)90399-H
Dyar MD, Mackwell SJ, McGuire AV, Cross LR, Robertson JD (1993b) Crystal chemistry of Fe3+ and H+ in mantle kaersutite: implications for mantle metasomatism. Am Mineral 78:968–979
Dyar MD, Delaney JS, Sutton SR (2001) Fe XANES spectra of iron-rich micas. Eur J Mineral 13:1079–1098. https://doi.org/10.1127/0935-1221/2001/0013-1079
Dyar MD, Lowe EW, Guidotti CV, Delaney JS (2002) Fe3+ and Fe2+ partitioning among silicates in metapelites: a synchrotron micro-XANES study. Am Mineral 87:514–522. https://doi.org/10.2138/am-2002-0414
Dyar MD, Breves EA, Emerson E, Bell SW, Nelms M, Ozanne MV, Peel SE, Carmosino ML, Tucker JM, Gunter ME, Delaney JS, Lanzirotti A, Woodland AB (2012) Accurate determination of ferric iron in garnets by bulk Mössbauer spectroscopy and synchrotron micro-XANES. Am Mineral 97:1726–1740. https://doi.org/10.2138/am.2012.4107
Dymek RF (1983) Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland. Am Mineral 68:880–899
Eckert JOJ (1988) Petrology and tectonic implications of the transition from the staurolite-kyanite zone to the Wayah granulite-facies metamorphic core, southwest North Carolina Blue Ridge; including quantitative analysis of mineral homogeneity. Doctoral thesis, Texas A&M University
Ernst WG, Wai CM (1970) Mössbauer, infrared, X-ray and optical study of cation ordering and dehydrogenation in natural and heat-treated sodic amphiboles. Am Mineral 55:1226–1258
Eugster HP, Wones DR (1962) Stability relations of the ferruginous biotite, annite. J Petrol 3:82–125. https://doi.org/10.1093/petrology/3.1.82
Evans KA, Dyar MD, Reddy SM, Lanzirotti A, Adams DT, Tailby N (2014) Variation in XANES in biotite as a function of orientation, crystal composition, and metamorphic history. Am Mineral 99:443–457. https://doi.org/10.1515/am.2014.4222
Fleming PD (1971) Metamorphism and folding in the Mt. Lofty Ranges, South Australia, with particular reference to the Dawesley-Kanmantoo area. Doctoral thesis, University of Adelaide
Fleming PD (1972) Mg-Fe distribution between coexisting garnet and biotite, and the status of fibrolite in the andalusite-staurolite zone of the Mt Lofty Ranges, South Australia. Geol Mag 109:477–482. https://doi.org/10.1017/S0016756800042758
Flinn D (1967) The metamorphic rocks of the southern part of the Mainland of Shetland. Geol J 5:251–290. https://doi.org/10.1002/gj.3350050203
Forshaw JB, Waters DJ, Pattison DRM, Palin RM, Gopon P (2019) A comparison of observed and thermodynamically predicted phase equilibria and mineral compositions in mafic granulites. J Metamorph Geol 37:153–179. https://doi.org/10.1111/jmg.12454
Foster MD (1960) Interpretation of the composition of trioctahedral micas. US Geol Surv Prof Pap 354-B:11–48
Foster MD (1962) Interpretation of the composition and a classification of the chlorites. US Geol Surv Prof Pap 414-A:1–33
Foster MD (1964) Water content of micas and chlorites. US Geol Surv Prof Pap 474-F:1–15
Fritz SF, Popp RK (1985) A single-dissolution technique for determining FeO and Fe2O3 in rock and mineral samples. Am Mineral 70:961–968
Geiger CA, Armbruster T, Khomenko V, Quartieri S (2000a) Cordierite I: the coordination of Fe2+. Am Mineral 85:1255–1264. https://doi.org/10.2138/am-2000-8-918
Geiger CA, Rager H, Czank M (2000b) Cordierite III: the site occupation and concentration of Fe3+. Contrib Mineral Petrol 140:344–352. https://doi.org/10.1007/s004100000194
George FR, Waters DJ, Gough SJ, Searle MP, Forshaw JB (2021) Phase equilibria and microstructural constraints on the high temperature building of the Kohistan island arc: the Jijal garnet granulites, northern Pakistan. Metamorph Geol. https://doi.org/10.1111/jmg.12622
Goossens PJ (1970) Le comportement des grenats dans les séries métamorphiques de Zermatt (Suisse). Schweizerische Mineral Petrogr Mitteilungen 50:291–320. https://doi.org/10.5169/seals-39259
Grambling JA, Williams ML (1985) The effects of Fe3+ and Mn3+ on aluminum silicate phase relations in north-central New Mexico, U.S.A. J Petrol 26:324–354. https://doi.org/10.1093/petrology/26.2.324
Green JC (1963) High-level metamorphism of pelitic rocks in Northern New Hampshire. Am Mineral 48:991–1023
Guidotti CV, Dyar MD (1991) Ferric iron in metamorphic biotite and its petrologic and crystallochemical implications. Am Mineral 76:161–175
Guidotti CV, Sassi FP (1998a) Miscellaneous isomorphous substitutions in Na-K white micas: a review, with special emphasis to metamorphic micas. Rend Lincei 53:1689–1699. https://doi.org/10.1017/CBO9781107415324.004
Guidotti CV, Sassi FP (1998b) Petrogenetic significance of Na-K white mica mineralogy: recent advances for metamorphic rocks. Eur J Mineral 10:815–854. https://doi.org/10.1127/ejm/10/5/0815
Guidotti CV, Yates MG, Dyar MD, Taylor ME (1994) Petrogenetic implications of the Fe3+ content of muscovite in pelitic schists. Am Mineral 79:793–795
Hall DJ (1970) Compositional variations in biotites and garnets from kyanite and sillimanite zone mica schists, Orange Area, Massachusetts and New Hampshire. University of Massachusetts
Hansen JW (1972) Zur Geologie, Petrographie und Geochemie der Bündnerschiefer-Serien zwischen Nufenenpass (Schweiz) und Cascata Toce (Italia). Schweizerische Mineral Petrogr Mitteilungen 52:109–153. https://doi.org/10.5169/seals-40600
Hattori H (1967) Occurrence of sillimanite-garnet-biotite gneisses and their significance in metamorphic zoning in the South Island, New Zealand. New Zeal J Geol Geophys 10:269–299. https://doi.org/10.1080/00288306.1967.10428197
Hawthorne FC, Ungaretti L, Oberti R, Caucia F, Callegari A (1993) The crystal chemistry of staurolite. llI. Local order and chemical composition. Can Mineral 31:597–616
Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) IMA report: Nomenclature of the amphibole supergroup. Am Mineral 97:2031–2048. https://doi.org/10.2138/am.2012.4276
Hayama Y (1964) Progressive metamorphism of pelitic and psammitic rocks in the Komagane district, Nagano Pref., Central Japan. J Fac Sci Univ Tokyo Sec 2 15:321–369
Helms TS, Labotka TC (1991) Petrogenesis of early Proterozoic pelitic schists of the southern Black Hills, South Dakota: constraints on regional low-pressure metamorphism. Geol Soc Am Bull 103:1324–1334. https://doi.org/10.1130/0016-7606(1991)103%3c1324:POEPPS%3e2.3.CO;2
Hietanen A (1967) On the facies series in various types of metamorphism. J Geol 75:187–214. https://doi.org/10.1086/627246
Hietanen A (1969) Distribution of Fe and Mg between garnet, staruolite and biotite in aluminum-rich schist in various metamorphic zones north of the Idaho Batholith. Am J Sci 267:422–456. https://doi.org/10.2475/ajs.267.3.422
Hiroi Y (1983) Progressive metamorphism of the Unazuki pelitic schists in the Hida terrane, central Japan. Contrib Mineral Petrol 82:334–350. https://doi.org/10.1007/BF00399711
Höfer HE, Brey GP, Schulz-Dobrick B, Oberhänsli R (1994) The determination of the oxidation state of iron by the electron microprobe. Eur J Mineral 6:407–418. https://doi.org/10.1127/ejm/6/3/0407
Holdaway MJ, Mukhopadhyay B, Dyar MD, Guidotti CV, Dutrow BL (1997) Garnet-biotite geothermometry revised: new Margules parameters and a natural specimen data set from Maine. Am Mineral 82:582–595
Holland TJB, Blundy JD (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447. https://doi.org/10.1007/BF00310910
Holland TJB, Powell R (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O–Na2O–CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2O–O2. J Metamorph Geol 8:89–124. https://doi.org/10.1111/j.1525-1314.1990.tb00458.x
Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
Holland TJB, Powell R (2003) Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Mineral Petrol 145:492–501. https://doi.org/10.1007/s00410-003-0464-z
Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.x
Hounslow AW, Moore JM (1967) Chemical petrology of Grenville schists near Fernleigh. Ontario J Petrol 8:1–28. https://doi.org/10.1093/petrology/8.1.1
Hunziker JCV (1966) Zur Geologie und Geochemie des Gebietes zwischen Valle Antigorio (Provincia di Novara) und Valle di Campo (Kt. Tessin). Schweizerische Mineral Petrogr Mitteilungen 46:473–552. https://doi.org/10.5169/seals-36138
Joyce AS (1970) Chemical variation in a pelitic hornfels. Chem Geol 6:51–58. https://doi.org/10.1016/0009-2541(70)90005-7
Kamineni DC (1975) Chemical mineralogy of some cordierite-bearing rocks near Yellowknife, Northwest Territories, Canada. Contrib Mineral Petrol 53:293–310. https://doi.org/10.1007/BF00382445
Kretz R (1990) Biotite and garnet compositional variation and mineral equilibria in Grenville gneisses of the Otter Lake area, Quebec. J Metamorph Geol 8:493–506. https://doi.org/10.1111/j.1525-1314.1990.tb00482.x
Kutsukake T (1976) Distribution of major and some distribution of major and minor elements in pelitic metamorphic rocks in the Ryôke Zone of Central Japan, in comparison with the non-metamorphic ‘Palaeozoic’ Shales. Mem Fac Sci Kyoto Univ Ser Geol Mineral 42:107–129
Kutsukake T (1977) Petrological studies on the Ryoke metamorphic rocks in the Toyone-mura Area, Aichi Prefecture, Japan. Mem Fac Sci Kyoto Univ Ser Geol Miner XLIII:49–110
Kwak TAP (1968) Metamorphic petrology and geochemistry across the Grenville Province - Southern Province Boundary Dill Township, Sudbury, Ontario. Doctoral thesis, McMaster University
Labotka TC (1980) Petrology of a medium-pressure regional metamorphic terrane, Funeral Mountains, California. Am Mineral 65:670–689
Labotka TC (1981) Petrology of an andalusite-type regional metamorphic terrane, Panamint mountains, California. J Petrol 22:261–296. https://doi.org/10.1093/petrology/22.2.261
Lal RK, Moorhouse WW (1969) Cordierite–gedrite rocks and associated gneisses of Fishtail Lake, Harcourt Township, Ontario. Can J Earth Sci 6:145–165. https://doi.org/10.1139/e69-014
Lal RK, Shukla RS (1975) Low-pressure regional metamorphism in the northern portion of the Khetri Copper Belt of Rajasthan, India. Neues Jahrb Für Mineral Abhandlungen 124:294–325
Lalonde AE, Rancourt DG, Ping JY (1998) Accuracy of ferric/ferrous determinations in micas: a comparison of Mössbauer spectroscopy and the Pratt and Wilson wet-chemical methods. Hyperfine Interact 117:175–204. https://doi.org/10.1023/A:1012607813487
Lambert RSJ (1959) The mineralogy and metamorphism of the Moine Schists of the Morar and Knoydart Districts of Inverness-shire. Trans Edinburgh Geol Soc 63:553–588. https://doi.org/10.1017/S0080456800003148
Lanari P, Wagner T, Vidal O (2014) A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO-FeO-Al2O3-SiO2-H2O: applications to P-T sections and geothermometry. Contrib Mineral Petrol 167:1–19. https://doi.org/10.1007/s00410-014-0968-8
Leake BE (1958) Composition of pelites from Connemara, Co., Galway, Ireland. Geol Mag 95:281–296. https://doi.org/10.1017/S0016756800062841
Lempart M, Derkowski A, Luberda-Durnas K, Skiba M, Błachowski A (2018) Dehydrogenation and dehydroxylation as drivers of the thermal decomposition of Fe-chlorites. Am Mineral 103:1837–1850. https://doi.org/10.2138/am-2018-6541
Lempart M, Derkowski A, StrÄczek T, Kapusta C (2020) Systematics of H2 and H2O evolved from chlorites during oxidative dehydrogenation. Am Mineral 105:932–944. https://doi.org/10.2138/am-2020-7326
Li X, Zhang C, Almeev RR, Zhang XC, Zhao XF, Wang LX, Koepke J, Holtz F (2019) Electron probe microanalysis of Fe2+/ΣFe ratios in calcic and sodic-calcic amphibole and biotite using the flank method. Chem Geol 509:152–162. https://doi.org/10.1016/j.chemgeo.2019.01.009
Li X, Zhang C, Behrens H, Holtz F (2020) Calculating biotite formula from electron microprobe analysis data using a machine learning method based on principal components regression. Lithos 356–357:105371. https://doi.org/10.1016/j.lithos.2020.105371
Lo Pò D, Braga R (2014) Influence of ferric iron on phase equilibria in greenschist facies assemblages: The hematite-rich metasedimentary rocks from the Monti Pisani (Northern Apennines). J Metamorph Geol 32:371–387. https://doi.org/10.1111/jmg.12076
Lundgren LW (1966) Muscovite reactions and partial melting in South-eastern Connecticut. J Petrol 7:421–453. https://doi.org/10.1093/petrology/7.3.421
Lyons JB, Morse SA (1970) Mg/Fe partitioning in garnet and biotite from some granitic, pelitic, and calcic rocks. Am Mineral 55:231
Masci L, Dubacq B, Verlaguet A, Chopin C, Andrade VD, Herviou C (2019) A XANES and EPMA study of Fe3+ in chlorite: Importance of oxychlorite and implications for cation site distribution and thermobarometry. Am Mineral 104:403–417. https://doi.org/10.2138/am-2019-6766
Mason B (1962) Metamorphism in the Southern Alps of New Zealand. Bull Am Museum Nat Hist 123:4
Mather JD (1970) The biotite isograd and the lower greenschist facies in the Dalradian rocks of Scotland. J Petrol 11:253–275. https://doi.org/10.1093/petrology/11.2.253
McKay DS (1964) Chemistry of coexisting metamorphic muscovite and biotite from eastern New York and western Connecticut. Doctoral thesis, Rice University
McNamara MJ (1965) The lower greenschist facies in the Scottish Highlands. Geol Foren Istockholm Forh 87:347–389. https://doi.org/10.1080/11035896509448918
Mielke H, Blümel P, Langer K (1979) Regional low-pressure metamorphism of low and medium grade in metapelites and -psammites of the Fichtelgebirge area, NE-Bavaria. Neues Jahrb Für Mineral Abhandlungen 137:83–112
Miyashiro A (1956) Data on garnet-biotite equilibria in some metamorphic rocks of the Ryoke zone. J Geol Soc Japan 62:700–702
Miyashiro A (1958) Regional metamorphism of the Gosaisyo-Takanuki District in the Central Abukuma Plateau. J Fac Sci Univ Tokyo Sect II 11:220–271
Miyashiro A (1961) Evolution of metamorphic belts. J Petrol 2:277–311. https://doi.org/10.1093/petrology/2.3.277
Moeller KJ (1991) The crystal chemistry of chlorite in metapelites as found in the Rangeley area, W. Maine. Masters thesis, University of Oregon
Mohr DW, Newton RC (1983) Kyanite-staurolite metamorphism in sulfidic schists of the Anakeesta formation, Great Smoky mountains, North Carolina. Am J Sci 283:97–134. https://doi.org/10.2475/ajs.283.2.97
Moore JM (1960) Phase relations in the contact aureole of the Onawa pluton, Maine. Doctoral thesis, Massachusetts Institute of Technology
Okrusch M (1969) Die Gneishornfelse um Steinach in der Oberpfalz. Contrib Mineral Petrol 22:32–72. https://doi.org/10.1007/BF00388012
Okrusch M (1971) Garnet-cordierite-biotite equilibria in the Steinach aureole, Bavaria. Contrib Mineral Petrol 32:1–23. https://doi.org/10.1007/BF00372230
Ono A (1969) Zoning of the metamorphic rocks in the Takato-Sioziri area, Nagano Prefecture. J Geol Soc Jpn 10:521–536
Palin RM, Weller OM, Waters DJ, Dyck B (2016) Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations. Geosci Front 7:591–607. https://doi.org/10.1016/j.gsf.2015.08.005
Pattison DRM, Tracy RJ (1991) Phase equilibria and thermobarometry of metapelites. Rev Mineral Geochem 26:106–206
Phinney WC (1963) Phase equilibria in the metamorphic rocks of St. Paul Island and Cape North, Nova Scotia. J Petrol 4:90–130. https://doi.org/10.1093/petrology/4.1.90
Powell R (1973) Mineral equilibria in the Leven schists near Fort William, Inverness-shire. Doctoral thesis, University of Oxford
Pratt JH (1894) On the determinations of ferrous iron in silicates. Am J Sci 48:149
Rancourt DG (1993) Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas. Reply. Am Mineral 78:669–671
Rancourt DG, Dang MZ, Lalonde AE (1992) Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas. Am Mineral 77:34–43
Redhammer GJ, Beran A, Dachs E, Amthauer G (1993) A Mössbauer and X-ray diffraction study of annites synthesized at different oxygen fugacities and crystal chemical implications. Phys Chem Miner 20:382–394. https://doi.org/10.1007/BF00203107
Reinhardt EW (1968) Phase relations in cordierite-bearing gneisses from the Gananoque area, Ontario. Can J Earth Sci 5:455–482. https://doi.org/10.1139/e68-043
Righter K, Dyar MD, Delaney JS, Vennemann TW, Hervig RL, King PL (2002) Correlations of octahedral cations with OH-, O2-, Cl-, and F- in biotite from volcanic rocks and xenoliths. Am Mineral 87:142–153. https://doi.org/10.2138/am-2002-0115
Robinson P, Spear FS, Schumacher JC, Laird J, Klein C, Evans BW, Doolan BL (1982) Phase relations of metamorphic amphiboles: Natural occurrence and theory. In: Veblen DR, Ribbe PH (eds) Reviews in Mineralogy, vol 9B. Amphiboles: Petrology and Experimental Phase Relations, pp 1–211
Rumble D (1973) Fe-Ti oxide minerals from regionally metamorphosed quartzites of western New Hampshire. Contrib Mineral Petrol 42:181–195. https://doi.org/10.1007/BF00371584
Rumble D (1978) Mineralogy, petrology, and oxygen isotopic geochemistry of the Clough Formation, Black Mountain, Western New Hampshire, U.S.A. J Petrol 19:317–340. https://doi.org/10.1093/petrology/19.2.317
Saxena SK (1966) Distribution of elements between coexisting muscovite and biotite and crystal chemical role of titanium in the micas. Neues Jahrb Für Mineral Abhandlungen 105:1–17
Schmid R, Wilke M, Oberhánsli R, Janssens K, Falkenberg G, Franz L, Gaab A (2003) Micro-XANES determination of ferric iron and its application in thermobarometry. Lithos 70:381–392. https://doi.org/10.1016/S0024-4937(03)00107-5
Schorn S, Diener JFA (2019) Seemingly disparate temperatures recorded in coexisting granulite facies lithologies. J Metamorph Geol 37:1049–1078. https://doi.org/10.1111/jmg.12500
Schumacher JC (1991) Empirical ferric iron corrections: necessity, assumptions, and effects on selected geothermobarometers. Mineral Mag 55:3–18. https://doi.org/10.1180/minmag.1991.055.378.02
Schumacher JC (2007) Metamorphic amphiboles: composition and coexistence. Rev Mineral Geochem 67:359–416
Schwander H, Hunziker J, Stern W (1968) Zur Mineralchemie von Hellglimmern in den Tessineralpen. Schweizerische Mineral Petrogr Mitteilungen 48:357–390. https://doi.org/10.5169/seals-37773
Schwarcz HP (1966) Chemical and mineralogic variations in an arkosic quartzite during progressive regional metamorphism. Bull Geol Soc Am 77:509–532. https://doi.org/10.1130/0016-7606(1966)77[509:CAMVIA]2.0.CO;2
Sen SK, Chakraborty KR (1968) Magnesium-iron exchange equilibrium in garnet-biotite and metamorphic grade. Neues Jahrb Für Mineral Abhandlungen 108:181–207
Senior A, Leake BE (1978) Regional metasomatism and the geochemistry of the Dalradian metasediments of Connemara, Western Ireland. J Petrol 19:585–625. https://doi.org/10.1093/petrology/19.3.585
Shapiro L, Brannock WW (1956) Rapid analysis of silicate rocks. Geol Surv Bull US Gov Print Off 1036
Sharma RS, Narayan V (1975a) Distribution of elements between coexisting garnet-biotite and muscovite-biotite pairs from polymetamorphic schists of south-east Beawar, Rajasthan, India. Schweizerische Mineral Petrogr Mitteilungen 55:61–77. https://doi.org/10.5169/seals-43065
Sharma RS, Narayan V (1975b) Petrology of polymetamorphic schists from an Archaean complex terrain, southeast of Beawar, Rajasthan, India. Neues Jahrb Für Mineral Abhandlungen 124:190–222
Shaw D (1956) Geochemistry of pelitic rocks. Part III: major elements and general geochemistry. Bull Geol Soc Am 67:919–934. https://doi.org/10.1130/0016-7606(1956)67[919:GOPRPI]2.0.CO;2
Snelling NJ (1957) Notes on the petrology and mineralogy of the barrovian metamorphic zones. Geol Mag 94:297–304. https://doi.org/10.1017/S0016756800068734
Stephenson NCN (1979) Coexisting garnets and biotites from Precambrian gneisses of the south coast of Western Australia. Lithos 6:74–87. https://doi.org/10.1016/0024-4937(79)90039-2
Stout JH (1972) Phase petrology and mineral chemistry of coexisting amphiboles from Telemark, Norway. J Petrol 13:99–145. https://doi.org/10.1093/petrology/13.1.99
Tajčmanová L, Connolly JAD, Cesare B (2009) A thermodynamic model for titanium and ferric iron solution in biotite. J Metamorph Geol 27:153–165. https://doi.org/10.1111/j.1525-1314.2009.00812.x
Tischendorf G, Förster H-J, Gottesmann B, Rieder M (2007) True and brittle micas: composition and solid-solution series. Mineral Mag 71:285–320. https://doi.org/10.1180/minmag.2007.071.3.285
Vallance TG (1960) Notes on metamorphic and plutonic rocks and their biotites from the Wantabadgery-Adelong-Tumbarumba district, NSW. Linn. Soc. New South Wales
Vidal O, Parra T, Vieillard P (2005) Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: application to natural examples and possible role of oxidation. Am Mineral 90:347–358. https://doi.org/10.2138/am.2005.1554
Vidal O, De Andrade V, Lewin E, Munoz M, Parra T, Pascarelli S (2006) P-T-deformation-Fe3+/Fe2+ mapping at the thin section scale and comparison with XANES mapping: application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan). J Metamorph Geol 24:669–683. https://doi.org/10.1111/j.1525-1314.2006.00661.x
Vieillard P (1994) Prediction of enthalpy of formation based on refined crystal structures of multisite compounds: Part 2. application to minerals belonging to the system Li2O-Na2O-K2O-BeO-MgO-CaO-MnO- FeO-Fe2O3-Al2O3-SiO2-H2O. Results and discussion. Geochim Cosmochim Acta. https://doi.org/10.1016/0016-7037(94)90267-4
Walshe JL (1986) A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems. Econ Geol 81:681–703. https://doi.org/10.2113/gsecongeo.81.3.681
Waters DJ, Charnley NR (2002) Local equilibrium in polymetamorphic gneiss and the titanium substitution in biotite. Am Mineral 87:383–396. https://doi.org/10.2138/am-2002-0402
Wenk VE, Schwander H, Hunziker J, Stern W (1963) Zur Mineralchemie von Biotit in den Tessineralpen. Schweizerische Mineral Petrogr Mitteilungen 43:435–463. https://doi.org/10.5169/seals-33463
Wetzel R (1973) Chemismus und physikalische Parameter einiger Chlorite aus der Grünschieferfazies. Schweizerische Mineral Petrogr Mitteilungen 53:273–298. https://doi.org/10.5169/seals-41386
Whipple ER (1974) Quantitative Mössbauer spectra and chemistry of iron. Doctoral thesis, Massachusetts Institute of Technology
White RW, Powell R, Holland TJB, Worley BA (2000) The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. J Metamorph Geol 18:497–511. https://doi.org/10.1046/j.1525-1314.2000.00269.x
White RW, Powell R, Clarke GL (2002) The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, Central Australia: Constraints from mineral equilibria calculations in the system. J Metamorph Geol 20:41–55. https://doi.org/10.1046/j.0263-4929.2001.00349.x
White RW, Pomroy NE, Powell R (2005) An in situ metatexite-diatexite transition in upper amphibolite facies rocks from Broken Hill. Australia J Metamorph Geol 23:579–602. https://doi.org/10.1111/j.1525-1314.2005.00597.x
White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25:511–527. https://doi.org/10.1111/j.1525-1314.2007.00711.x
White RW, Powell R, Holland TJB, Johnson TE, Green ECR (2014a) New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286. https://doi.org/10.1111/jmg.12071
White RW, Powell R, Johnson TE (2014b) The effect of Mn on mineral stability in metapelites revisited: new a-x relations for manganese-bearing minerals. J Metamorph Geol 32:809–828. https://doi.org/10.1111/jmg.12095
Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187. https://doi.org/10.2138/am.2010.3371
Williams ML, Grambling JA (1990) Manganese, ferric iron, and the equilibrium between garnet and biotite. Am Mineral 75:886–908
Wilson AD (1955) A new method for the determination of ferrous iron in rocks and minerals. Bull Geol Surv Gt Britain 9:56–58
Wilson AD (1960) The micro-determination of ferrous iron in silicate minerals by a volumetric and a colorimetric method. Analyst 85:823–827
Wones DR, Eugster HP (1965) Stability of biotite: experiment, theory, and application. Am Mineral 50:1228–1272
Wynne-Edwards HR, Hay PW (1963) Coexisting cordierite and garnet in regionally metamorphosed rocks from the Westport Area, Ontario. Can Mineral 7:453–478
Yardley BWD (1977) Relationships between the chemical and modal compositions of metapelites from Connemara, Ireland. Lithos 10:235–242. https://doi.org/10.1016/0024-4937(77)90050-0
Zane A, Weiss Z (1998) A procedure for classifying rock-forming chlorites based on microprobe data. Rend Lincei 56:51–56. https://doi.org/10.1007/BF02904455
Zen EA (1981) Metamorphic mineral assemblages of slightly calcic pelitic rocks in and around the Taconic allochthon, southwestern Massachusetts and adjacent Connecticut and New York. US Geol Surv Prof Pap 1113. https://doi.org/10.3133/pp1113
Acknowledgements
This research represents a portion of Forshaw's doctoral dissertation at the University of Calgary. We acknowledge the painstaking work of petrologists in obtaining wet chemical analyses of minerals prior to the widespread use of the electron microprobe, especially those involving measurement of Fe2+ and Fe3+. Darby Dyar is thanked for providing unpublished data for the West-central Maine region. Benoît Dubacq and Johann Diener are thanked for their insightful and constructive reviews, and Daniela Rubatto for her editorial handling.
Funding
Funding for this work was provided by a Natural Sciences and Engineering Research Council of Canada Discovery Grant (037233) to D.R.M. Pattison.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Not applicable.
Additional information
Communicated by Daniela Rubatto.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
410_2021_1814_MOESM1_ESM.xlsx
Supplementary file1 Online Resource 1 – supplementary-tables.xlsx. Table S1: List of samples in the database including the following information: locality name, abbreviation, country, reference, sample name, metamorphic zone, facies series, Fe-oxide type, mineral assemblage, minerals analysed, and whether whole rock data are available. Table S2: Bulk rock compositions in weight per cent oxide and mole per cent oxide, with calculated XMg (= Mg/(Mg + Fe2+) in moles) and XFe3+ (Fe3+/(Fe3+ + Fe2+) in moles). Table S3: Biotite weight per cent oxide analyses and cations calculated for a 22 O + Ti cations formula unit, with accompanying XMg and XFe3+. Table S4: White mica weight per cent oxide analyses and cations calculated for a 22 O formula unit, with accompanying XMg and XFe3+. Table S5: Chlorite weight per cent oxide analyses and cations calculated for a 28 O formula unit, with accompanying XMg and XFe3+. Table S6: Staurolite weight per cent oxide analyses and cations calculated for a 46 O formula unit, with accompanying XMg and XFe3+. (XLSX 1017 kb)
Rights and permissions
About this article
Cite this article
Forshaw, J.B., Pattison, D.R.M. Ferrous/ferric (Fe2+/Fe3+) partitioning among silicates in metapelites. Contrib Mineral Petrol 176, 63 (2021). https://doi.org/10.1007/s00410-021-01814-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00410-021-01814-4