Abstract
Single-valued trapezoidal neutrosophic numbers (SVTNNs) are very useful tools for describing complex information, because they are able to maintain the completeness of the information and describe it accurately and comprehensively. This paper develops a method based on the single-valued trapezoidal neutrosophic normalized weighted Bonferroni mean (SVTNNWBM) operator to address multi-criteria group decision-making (MCGDM) problems. First, the limitations of existing operations for SVTNNs are discussed, after which improved operations are defined. Second, a new comparison method based on score function is proposed. Then, the entropy-weighted method is established in order to obtain objective expert weights, and the SVTNNWBM operator is proposed based on the new operations of SVTNNs. Furthermore, a single-valued trapezoidal neutrosophic MCGDM method is developed. Finally, a numerical example and comparison analysis are conducted to verify the practicality and effectiveness of the proposed approach.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353
Derrac J, Chiclana F, Garcia S, Herrera F (2016) Evolutionary fuzzy k-nearest neighbors algorithm using interval-valued fuzzy sets. Inf Sci 329:144–163
Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96
Atanassov KT, Gargov G (1989) Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst 31(3):343–349
Wan S, Lin L-L, Dong J (2016) MAGDM based on triangular Atanassov’s intuitionistic fuzzy information aggregation. Neural Comput Appl. doi:10.1007/s00521-016-2196-9
Zhou H, Wang J-Q, Zhang H-Y (2016) Multi-criteria decision-making approaches based on distance measures for linguistic hesitant fuzzy sets. J Oper Res Soc. doi:10.1057/jors.2016.41
Beg I, Rashid T (2014) Group decision making using intuitionistic hesitant fuzzy sets. Int J Fuzzy Log Intell Syst 14(3):181–187
Liu H-W, Wang G-J (2007) Multi-criteria decision making methods based on intuitionistic fuzzy sets. Eur J Oper Res 179(1):220–233
Xu Z-S (2012) Intuitionistic fuzzy multi-attribute decision making: an interactive method. IEEE Trans Fuzzy Syst 20(3):514–525
Wang J-Q, Han Z-Q, Zhang H-Y (2014) Multi-criteria group decision-making method based on intuitionistic interval fuzzy information. Group Decis Negot 23(4):715–733
Amorim P, Curcio E, Almada-Lobo B, Barbosa-Póvoa APFD, Grossmann IE (2016) Supplier selection in the processed food industry under uncertainty. Eur J Oper Res 252(3):801–814
Chen S-M, Cheng S-H, Chiou C-H (2016) Fuzzy multi-attribute group decision making based on intuitionistic fuzzy sets and evidential reasoning methodology. Inf Fusion 27:215–227
Liu P-D, Liu X (2016) The neutrosophic number generalized weighted power averaging operator and its application in multiple attribute group decision making. Int J Mach Learn Cybern. doi:10.1007/s13042-016-0508-0
Wu J, Xiong R, Chiclana F (2016) Uninorm trust propagation and aggregation methods for group decision making in social network with four tuple information. Knowl Based Syst 96(2):29–39
Wang J-Q, Nie R-R, Zhang H-Y (2013) New operators on triangular intuitionistic fuzzy numbers and their applications in system fault analysis. Inf Sci 251:79–95
Wang J-Q (2008) Overview on fuzzy multi-criteria decision-making approach. Control Decis 23(6):002
Wan S-P (2013) Power average operators of trapezoidal intuitionistic fuzzy numbers and application to multi-attribute group decision making. Appl Math Model 37(6):4112–4126
Smarandache F (1998) Neutrosophy: neutrosophic probability, set, and logic. American Research Press, Rehoboth, pp 1–105
Smarandache F (1999) A unifying field in logics: neutrosophic logic neutrosophy, neutrosophic set, neutrosophic probability. American Research Press, Rehoboth, pp 1–141
Smarandache F (2008) Neutrosophic set—a generalization of the intuitionistic fuzzy set. Int J Pure Appl Math 24(3):38–42
Deli I, Şubaş Y (2015) Some weighted geometric operators with SVTrN-numbers and their application to multi-criteria decision making problems. J Intell Fuzzy Syst. doi:10.3233/jifs-151677
El-Hefenawy N, Metwally M-A, Ahmed Z-M, El-Henawy I-M (2016) A review on the applications of neutrosophic sets. J Comput Theor Nanosci 13(1):936–944
Şubaş Y (2015) Neutrosophic numbers and their application to multi-attribute decision making problems. Unpublished Masters Thesis, 7 Aralık University, Graduate School of Natural and Applied Science
Liu C, Luo Y (2016) Correlated aggregation operators for simplified neutrosophic set and their application in multi-attribute group decision making. J Intell Fuzzy Syst 30(3):1755–1761
Wu X-H, Wang J, Peng J-J, Chen X-H (2016) Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. Int J Fuzzy Syst. doi:10.1007/s40815-016-0180-2
Ji P, Zhang H-Y, Wang J-Q (2016) A projection-based TODIM method under multi-valued neutrosophic environments and its application in personnel selection. Neural Comput Appl. doi:10.1007/s00521-016-2436-z
Liu P-D, Li H (2015) Multiple attribute decision-making method based on some normal neutrosophic Bonferroni mean operators. Neural Comput Appl 25(7–8):1–16
Broumi S, Talea M, Bakali A, Smarandache F (2016) Single valued neutrosophic graphs. J New Theory 10:86–101
Broumi S, Talea M, Bakali A, Smarandache F (2016) Interval valued neutrosophic graphs. Publ Soc Math Uncertain 10:5
Broumi S, Deli I, Smarandache F (2014) Interval valued neutrosophic parameterized soft set theory and its decision making. Appl Soft Comput 28(4):109–113
Şahin R, Liu P (2016) Correlation coefficient of single-valued neutrosophic hesitant fuzzy sets and its applications in decision making. Neural Comput Appl. doi:10.1007/s00521-015-2163-x
Tian Z-P, Wang J, Wang J-Q, Zhang H-Y (2016) An improved MULTIMOORA approach for multi-criteria decision-making based on interdependent inputs of simplified neutrosophic linguistic information. Neural Comput Appl. doi:10.1007/s00521-016-2378-5
Tian Z-P, Wang J, Wang J-Q, Zhang H-Y (2016) Simplified neutrosophic linguistic multi-criteria group decision-making approach to green product development. Group Decis Negot. doi:10.1007/s10726-016-9479-5
Tian Z-P, Wang J, Zhang H-Y, Wang J-Q (2016) Multi-criteria decision-making based on generalized prioritized aggregation operators under simplified neutrosophic uncertain linguistic environment. Int J Mach Learn Cybern. doi:10.1007/s13042-016-0552-9
Ma Y-X, Wang J-Q, Wang J, Wu X-H (2016) An interval neutrosophic linguistic multi-criteria group decision-making method and its application in selecting medical treatment options. Neural Comput Appl. doi:10.1007/s00521-016-2203-1
Chan H-K, Wang X-J, Raffoni A (2014) An integrated approach for green design: life-cycle, fuzzy AHP and environmental management accounting. Br Account Rev 46(4):344–360
Chan H-K, Wang X-J, White GRT, Yip N (2013) An extended fuzzy-AHP approach for the evaluation of green product designs. IEEE Trans Eng Manag 60(2):327–339
Ye J (2015) Some weighted aggregation operators of trapezoidal neutrosophic numbers and their multiple attribute decision making method. http://www.gallup.unm.edu/~smarandache/SomeWeightedAggregationOperators.pdf
Deli I, Şubaş Y (2016) A ranking method of single valued neutrosophic numbers and its applications to multi-attribute decision making problems. Int J Mach Learn Cybern. doi:10.1007/s13042-016-0505-3
Broumi S, Smarandache F (2014) Single valued neutrosophic trapezoid linguistic aggregation operators based multi-attribute decision making. Bull Pure Appl Sci Math Stat 33(2):135–155
Said B, Smarandache F (2016) Multi-attribute decision making based on interval neutrosophic trapezoid linguistic aggregation operators. Handb Res Gen Hybrid Set Struct Appl Soft Comput. doi:10.5281/zenodo.49136
Tian Z-P, Wang J, Wang J-Q, Chen X-H (2015) Multi-criteria decision-making approach based on gray linguistic weighted Bonferroni mean operator. Int Trans Oper Res. doi:10.1111/itor.12220
Ye J (2015) Multiple attribute group decision making based on interval neutrosophic uncertain linguistic variables. Int J Mach Learn Cybern. doi:10.1007/s13042-015-0382-1
Bonferroni C (1950) Sulle medie multiple di potenze. Bolletino dell`Unione Matematica Italiana 5:267–270
Li D, Zeng W, Li J (2016) Geometric Bonferroni mean operators. Int J Intell Syst. doi:10.1002/int.21822
Liu P, Zhang L, Liu X, Wang P (2016) Multi-valued neutrosophic number Bonferroni mean operators with their applications in multiple attribute group decision making. Int J Inf Technol Decis Mak. doi:10.1142/s0219622016500346
Liu P-D, Jin F (2012) The trapezoid fuzzy linguistic Bonferroni mean operators and their application to multiple attribute decision making. Sci Iran 19(6):1947–1959
Zhu W-Q, Liang P, Wang L-J, Hou Y-R (2015) Triangular fuzzy Bonferroni mean operators and their application to multiple attribute decision making. J Intell Fuzzy Syst 29(4):1265–1272
Chen Z-S, Chin K-S, Li Y-L, Yang Y (2016) On generalized extended Bonferroni means for decision making. IEEE Trans Fuzzy Syst. doi:10.1109/tfuzz.2016.2540066
Zhang H-Y, Ji P, Wang J, Chen X-H (2017) A novel decision support model for satisfactory restaurants utilizing social information: a case study of TripAdvisor.com. Tour Manag 59: 281–297
Dubois D, Prade H (1983) Ranking fuzzy numbers in the setting of possibility theory. Inf Sci 30(3):183–224
Wang H-B, Smarandache F, Zhang Y, Sunderraman R (2010) Single valued neutrosophic sets. Multispace Multistruct 4:410–413
Deli I, Şubaş Y (2014) Single valued neutrosophic numbers and their applications to multi-criteria decision making problem. viXra preprint viXra 1412.0012
Xu Z-S, Yager R-R (2011) Intuitionistic fuzzy Bonferroni means. IEEE Trans Syst Man Cybern B (Cybern) 41(2):568–578
Zhou W, He J-M (2012) Intuitionistic fuzzy normalized weighted Bonferroni mean and its application in multi-criteria decision making. J Appl Math 1110-757x:1–16
Shannon C-E (2001) A mathematical theory of communication. ACM SIGMOBILE Mob Comput Commun Rev 5(1):3–55
López-de-Ipiña K, Solé-Casals J, Faundez-Zanuy M, Calvo P-M, Sesa E, Martinez de Lizarduy U, Bergareche A (2016) Selection of entropy based features for automatic analysis of essential tremor. Entropy 18(5):184
Wei C, Yan F, Rodríguez R-M Entropy measures for hesitant fuzzy sets and their application in multi-criteria decision making. J Intell Fuzzy Syst (Preprint) 1–13
Verma R, Maheshwari S (2016) A new measure of divergence with its application to multi-criteria decision making under fuzzy environment. Neural Comput Appl. doi:10.1007/s00521-016-2311-y
Kumar A, Peeta S (2015) Entropy weighted average method for the determination of a single representative path flow solution for the static user equilibrium traffic assignment problem. Transp Res B Methodol 71(4):213–229
Yue Z (2014) TOPSIS-based group decision making methodology in intuitionistic fuzzy setting. Inf Sci 277(2):141–153
Wang J-H, Hao J-Y (2006) A new version of 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans Fuzzy Syst 14(3):435–445
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Nos. 71571193).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest regarding the publication of this paper.
Appendices
Appendix 1
Proof
In the following steps, Eq. (15) will be proved using mathematical induction on n.
-
1.
The following equation must be proved first:
$$\begin{aligned} {\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{j}^{q} } \right) &=\, \left\langle {\left[ {{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i1}^{p} a_{j1}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i2}^{p} a_{j2}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i3}^{p} a_{j3}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i4}^{p} a_{j4}^{q} } \right],} \right. \hfill \\ &\qquad \left( {\frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {T_{{\tilde{a}_{i} }} } \right)^{p} \left( {T_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}},} \right. \hfill \\ &\qquad \frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - I_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}}, \hfill \\ &\qquad\left. {\left. { \frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - F_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} +a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}}} \right)}\right\rangle \hfill \\ \end{aligned}$$(26)-
(a)
Utilizing the operations for SVTNNs and mathematical induction on n, we have
$$\tilde{a}_{i}^{p} = \left\langle {\left[ {a_{i1}^{p} ,a_{i2}^{p} ,a_{i3}^{p} ,a_{i4}^{p} } \right],\left( {\left( {T_{{\tilde{a}_{i} }} } \right)^{p} ,1 - \left( {1 - I_{{\tilde{a}_{i} }} } \right)^{p} ,1 - \left( {1 - F_{{\tilde{a}_{i} }} } \right)^{p} } \right)} \right\rangle ,$$$$\tilde{a}_{j}^{q} = \left\langle {\left[ {a_{j1}^{q} ,a_{j2}^{q} ,a_{j3}^{q} ,a_{j4}^{q} } \right],\left( {\left( {T_{{\tilde{a}_{j} }} } \right)^{q} ,1 - \left( {1 - I_{{\tilde{a}_{j} }} } \right)^{q} ,1 - \left( {1 - F_{{\tilde{a}_{j} }} } \right)^{q} } \right)} \right\rangle ,$$$$\tilde{a}_{i}^{p} \otimes \tilde{a}_{j}^{q} = \left\langle {\left[ {a_{i1}^{p} a_{j1}^{q} ,a_{i2}^{p} a_{j2}^{q} ,a_{i3}^{p} a_{j3}^{q} ,a_{i4}^{p} a_{j4}^{q} } \right],\left( {\begin{array}{*{20}l} {\left( {T_{{\tilde{a}_{i} }} } \right)^{p} \left( {T_{{\tilde{a}_{j} }} } \right)^{q} ,1 - \left( {1 - I_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - I_{{\tilde{a}_{j} }} } \right)^{q} ,} \hfill \\ {1 - \left( {1 - F_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - F_{{\tilde{a}_{j} }} } \right)^{q} } \hfill \\ \end{array} } \right)} \right\rangle$$When n = 2, the following equation can be calculated:\(\begin{aligned} {\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{j}^{q} } \right) &=\, \frac{{w_{1} w_{2} }}{{1 - w_{1} }}\left( {\tilde{a}_{1}^{p} \otimes \tilde{a}_{2}^{q} } \right) + \frac{{w_{2} w_{1} }}{{1 - w_{2} }}\left( {\tilde{a}_{2}^{p} \otimes \tilde{a}_{1}^{q} } \right) \hfill \\ &= \,\left\langle {\left[ {{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i1}^{p} a_{j1}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i2}^{p} a_{j2}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i3}^{p} a_{j3}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i4}^{p} a_{j4}^{q} } \right],} \right. \hfill \\ &\qquad \left( {\frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {T_{{\tilde{a}_{i} }} } \right)^{p} \left( {T_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}},} \right. \hfill \\ &\qquad \frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - I_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}}, \hfill \\ &\qquad\left. {\left. { \frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - F_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}}} \right)} \right\rangle . \hfill \\ \end{aligned}\).In other words, when n = 2, Eq. (26) is true.
-
(b)
Suppose that when n = k, Eq. (26) is true. That is,
$$\begin{aligned} {\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{j}^{q} } \right) &=\, \left\langle {\left[ {{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i1}^{p} a_{j1}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i2}^{p} a_{j2}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i3}^{p} a_{j3}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i4}^{p} a_{j4}^{q} } \right],} \right. \hfill \\ &\qquad \left( {\frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {T_{{\tilde{a}_{i} }} } \right)^{p} \left( {T_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}},} \right. \hfill \\ &\qquad \frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - I_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}}, \hfill \\ &\qquad\left. {\left. {\frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - F_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}}} \right)} \right\rangle \hfill \\ \end{aligned}$$(27)Then, when n = k + 1, the following result can be obtained:
$${\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left({\tilde{a}_{i}^{p} \otimes \tilde{a}_{j}^{q} } \right) = {\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{j}^{q} } \right) + \mathop \oplus \limits_{i = 1}^{k} \frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{k + 1}^{q} } \right) + \mathop \oplus \limits_{j = 1}^{k} \frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left( {\tilde{a}_{k + 1}^{p} \otimes \tilde{a}_{j}^{q} } \right).$$(28)Next, the following equation must be proved:
$$\begin{aligned} \mathop \oplus \limits_{i = 1}^{k} \frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{k + 1}^{q} } \right) = \left\langle {\left[ {\mathop \oplus \limits_{i = 1}^{k} \frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left( {a_{i1}^{p} \otimes a_{k + 1,1}^{q} } \right),\mathop \oplus \limits_{i = 1}^{k} \frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left( {a_{i2}^{p} \otimes a_{k + 1,2}^{q} } \right),\mathop \oplus \limits_{i = 1}^{k} \frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left( {a_{i3}^{p} \otimes a_{k + 1,3}^{q} } \right),\mathop \oplus \limits_{i = 1}^{k} \frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left( {a_{i4}^{p} \otimes a_{k + 1,4}^{q} } \right)} \right],} \right. \hfill \\ \quad \left( {\frac{{\mathop \oplus \limits_{i = 1}^{k} \frac{1}{2}\frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{k + 1,3}^{q} - a_{i2}^{p} \otimes a_{k + 1,2}^{q} + a_{i4}^{p} \otimes a_{k + 1,4}^{q} - a_{i1}^{p} \otimes a_{k + 1,1}^{q} } \right]\left( {T_{{\tilde{a}_{i} }} } \right)^{P} \left( {T_{{\tilde{a}_{k + 1} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{k} \frac{1}{2}\frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{k + 1,3}^{q} - a_{i2}^{p} \otimes a_{k + 1,2}^{q} + a_{i4}^{p} \otimes a_{k + 1,4}^{q} - a_{i1}^{p} \otimes a_{k + 1,1}^{q} } \right]}},} \right. \hfill \\ \quad \frac{{\mathop \oplus \limits_{i = 1}^{k} \frac{1}{2}\frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{k + 1,3}^{q} - a_{i2}^{p} \otimes a_{k + 1,2}^{q} + a_{i4}^{p} \otimes a_{k + 1,4}^{q} - a_{i1}^{p} \otimes a_{k + 1,1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{i} }} } \right)^{P} \left( {1 - I_{{\tilde{a}_{k + 1} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{k} \frac{1}{2}\frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{k + 1,3}^{q} - a_{i2}^{p} \otimes a_{k + 1,2}^{q} + a_{i4}^{p} \otimes a_{k + 1,4}^{q} - a_{i1}^{p} \otimes a_{k + 1,1}^{q} } \right]}}, \hfill \\ \quad \left. {\left. {\frac{{\mathop \oplus \limits_{i = 1}^{k} \frac{1}{2}\frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{k + 1,3}^{q} - a_{i2}^{p} \otimes a_{k + 1,2}^{q} + a_{i4}^{p} \otimes a_{k + 1,4}^{q} - a_{i1}^{p} \otimes a_{k + 1,1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{i} }} } \right)^{P} \left( {1 - F_{{\tilde{a}_{k + 1} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{k} \frac{1}{2}\frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{k + 1,3}^{q} - a_{i2}^{p} \otimes a_{k + 1,2}^{q} + a_{i4}^{p} \otimes a_{k + 1,4}^{q} - a_{i1}^{p} \otimes a_{k + 1,1}^{q} } \right]}}} \right)} \right\rangle . \hfill \\ \end{aligned}$$(29)In the following steps, Eq. (29) will be proved using mathematical induction on k.
-
(i)
When k = 2, the following result can be calculated:
$$\begin{aligned} \mathop \oplus \limits_{i = 1}^{2} \frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{3}^{q} } \right) = \frac{{w_{1} w_{3} }}{{1 - w_{1} }}\left( {\tilde{a}_{1}^{p} \otimes \tilde{a}_{3}^{q} } \right) + \frac{{w_{2} w_{3} }}{{1 - w_{2} }}\left( {\tilde{a}_{2}^{p} \otimes \tilde{a}_{3}^{q} } \right) \hfill \\ = \left\langle {\left[ {\mathop \oplus \limits_{i = 1}^{2} \frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left( {a_{i1}^{p} \otimes a_{3,1}^{q} } \right),\mathop \oplus \limits_{i = 1}^{2} \frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left( {a_{i2}^{p} \otimes a_{3,2}^{q} } \right),\mathop \oplus \limits_{i = 1}^{2} \frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left( {a_{i3}^{p} \otimes a_{3,3}^{q} } \right),\mathop \oplus \limits_{i = 1}^{2} \frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left( {a_{i4}^{p} \otimes a_{3,4}^{q} } \right)} \right],} \right. \hfill \\ \left( {\frac{{\mathop \oplus \limits_{i = 1}^{2} \frac{1}{2}\frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{3,3}^{q} - a_{i2}^{p} \otimes a_{3,2}^{q} + a_{i4}^{p} \otimes a_{3,4}^{q} - a_{i1}^{p} \otimes a_{3,1}^{q} } \right]\left( {T_{{\tilde{a}_{i} }} } \right)^{P} \left( {T_{{\tilde{a}_{3} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{2} \frac{1}{2}\frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{3,3}^{q} - a_{i2}^{p} \otimes a_{3,2}^{q} + a_{i4}^{p} \otimes a_{3,4}^{q} - a_{i1}^{p} \otimes a_{3,1}^{q} } \right]}},} \right. \hfill \\ \frac{{\mathop \oplus \limits_{i = 1}^{2} \frac{1}{2}\frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{3,3}^{q} - a_{i2}^{p} \otimes a_{3,2}^{q} + a_{i4}^{p} \otimes a_{3,4}^{q} - a_{i1}^{p} \otimes a_{3,1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{i} }} } \right)^{P} \left( {1 - I_{{\tilde{a}_{3} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{2} \frac{1}{2}\frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{3,3}^{q} - a_{i2}^{p} \otimes a_{3,2}^{q} + a_{i4}^{p} \otimes a_{3,4}^{q} - a_{i1}^{p} \otimes a_{3,1}^{q} } \right]}}, \hfill \\ \left. {\left. {\frac{{\mathop \oplus \limits_{i = 1}^{2} \frac{1}{2}\frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{3,3}^{q} - a_{i2}^{p} \otimes a_{3,2}^{q} + a_{i4}^{p} \otimes a_{3,4}^{q} - a_{i1}^{p} \otimes a_{3,1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{i} }} } \right)^{P} \left( {1 - F_{{\tilde{a}_{3} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{2} \frac{1}{2}\frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{3,3}^{q} - a_{i2}^{p} \otimes a_{3,2}^{q} + a_{i4}^{p} \otimes a_{3,4}^{q} - a_{i1}^{p} \otimes a_{3,1}^{q} } \right]}}} \right)} \right\rangle . \hfill \\ \end{aligned}$$That is, when k = 2, Eq. (29) is true.
-
(ii)
Suppose that when k = l, Eq. (29) is true. That is,
$$\begin{aligned} \mathop \oplus \limits_{i = 1}^{l} \frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{l + 1}^{q} } \right) = \left\langle {\left[ {\mathop \oplus \limits_{i = 1}^{l} \frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left( {a_{i1}^{p} \otimes a_{l + 1,1}^{q} } \right),\mathop \oplus \limits_{i = 1}^{l} \frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left( {a_{i2}^{p} \otimes a_{l + 1,2}^{q} } \right),\mathop \oplus \limits_{i = 1}^{l} \frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left( {a_{i3}^{p} \otimes a_{l + 1,3}^{q} } \right),\mathop \oplus \limits_{i = 1}^{l} \frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left( {a_{i4}^{p} \otimes a_{l + 1,4}^{q} } \right)} \right],} \right. \hfill \\ \quad \left( {\frac{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 1,3}^{q} - a_{i2}^{p} \otimes a_{l + 1,2}^{q} + a_{i4}^{p} \otimes a_{l + 1,4}^{q} - a_{i1}^{p} \otimes a_{l + 1,1}^{q} } \right]\left( {T_{{\tilde{a}_{i} }} } \right)^{P} \left( {T_{{\tilde{a}_{l + 1} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 1,3}^{q} - a_{i2}^{p} \otimes a_{l + 1,2}^{q} + a_{i4}^{p} \otimes a_{l + 1,4}^{q} - a_{i1}^{p} \otimes a_{l + 1,1}^{q} } \right]}},} \right. \hfill \\ \quad \frac{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 1,3}^{q} - a_{i2}^{p} \otimes a_{l + 1,2}^{q} + a_{i4}^{p} \otimes a_{l + 1,4}^{q} - a_{i1}^{p} \otimes a_{l + 1,1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{i} }} } \right)^{P} \left( {1 - I_{{\tilde{a}_{l + 1} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 1,3}^{q} - a_{i2}^{p} \otimes a_{l + 1,2}^{q} + a_{i4}^{p} \otimes a_{l + 1,4}^{q} - a_{i1}^{p} \otimes a_{l + 1,1}^{q} } \right]}}, \hfill \\ \left. {\left. {\quad \frac{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 1,3}^{q} - a_{i2}^{p} \otimes a_{l + 1,2}^{q} + a_{i4}^{p} \otimes a_{l + 1,4}^{q} - a_{i1}^{p} \otimes a_{l + 1,1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{i} }} } \right)^{P} \left( {1 - F_{{\tilde{a}_{l + 1} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 1,3}^{q} - a_{i2}^{p} \otimes a_{l + 1,2}^{q} + a_{i4}^{p} \otimes a_{l + 1,4}^{q} - a_{i1}^{p} \otimes a_{l + 1,1}^{q} } \right]}}} \right)} \right\rangle . \hfill \\ \end{aligned}$$Then, when k = l + 1, the following result can be calculated:
$$\begin{aligned} \mathop \oplus \limits_{i = 1}^{l + 1} \frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{l + 2}^{q} } \right) = \mathop \oplus \limits_{i = 1}^{l} \frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{l + 2}^{q} } \right) + \frac{{w_{l + 1} w_{l + 2} }}{{1 - w_{l + 1} }}\left( {\tilde{a}_{l + 1}^{p} \otimes \tilde{a}_{l + 2}^{q} } \right) \hfill \\ = \left\langle {\left[ {\mathop \oplus \limits_{i = 1}^{l} \frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left( {a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right),\mathop \oplus \limits_{i = 1}^{l} \frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left( {a_{i2}^{p} \otimes a_{l + 2,2}^{q} } \right),\mathop \oplus \limits_{i = 1}^{l} \frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left( {a_{i3}^{p} \otimes a_{l + 2,3}^{q} } \right),\mathop \oplus \limits_{i = 1}^{l} \frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left( {a_{i4}^{p} \otimes a_{l + 2,4}^{q} } \right)} \right],} \right. \hfill \\ \quad \left( {\frac{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]\left( {T_{{\tilde{a}_{i} }} } \right)^{P} \left( {T_{{\tilde{a}_{l + 2} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{2 + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]}},} \right. \hfill \\ \quad \frac{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{i} }} } \right)^{P} \left( {1 - I_{{\tilde{a}_{l + 2} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]}}, \hfill \\ \quad \left. {\left. {\frac{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{i} }} } \right)^{P} \left( {1 - F_{{\tilde{a}_{l + 2} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]}}} \right)} \right\rangle \hfill \\ \oplus \left\langle {\left[ {\frac{{w_{l + 1} w_{l + 2} }}{{1 - w_{l + 1} }}a_{l + 1,1}^{p} a_{l + 2,1}^{q} ,\frac{{w_{l + 1} w_{l + 2} }}{{1 - w_{l + 1} }}a_{l + 1,2}^{p} a_{l + 2,2}^{q} ,\frac{{w_{l + 1} w_{l + 2} }}{{1 - w_{l + 1} }}a_{l + 1,3}^{p} a_{l + 2,3}^{q} ,\frac{{w_{l + 1} w_{l + 2} }}{{1 - w_{l + 1} }}a_{l + 1,4}^{p} a_{l + 2,4}^{q} } \right]} \right. \hfill \\ \left. {\quad \left( {\left( {T_{{\tilde{a}_{l + 1} }} } \right)^{p} \left( {T_{{\tilde{a}_{l + 2} }} } \right)^{q} ,1 - \left( {1 - I_{{\tilde{a}_{l + 1} }} } \right)^{p} \left( {1 - I_{{\tilde{a}_{l + 2} }} } \right)^{q} ,1 - \left( {1 - F_{{\tilde{a}_{l + 1} }} } \right)^{p} \left( {1 - F_{{\tilde{a}_{l + 2} }} } \right)^{q} } \right)} \right\rangle . \hfill \\ = \left\langle {\left[ {\mathop \oplus \limits_{i = 1}^{l + 1} \frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left( {a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right),\mathop \oplus \limits_{i = 1}^{l + 1} \frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left( {a_{i2}^{p} \otimes a_{l + 2,2}^{q} } \right),\mathop \oplus \limits_{i = 1}^{l + 1} \frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left( {a_{i3}^{p} \otimes a_{l + 2,3}^{q} } \right),\mathop \oplus \limits_{i = 1}^{l + 1} \frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left( {a_{i4}^{p} \otimes a_{l + 2,4}^{q} } \right)} \right],} \right. \hfill \\ \quad \left( {\frac{{\mathop \oplus \limits_{i = 1}^{l + 1} \frac{1}{2}\frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]\left( {T_{{\tilde{a}_{i} }} } \right)^{P} \left( {T_{{\tilde{a}_{l + 2} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{l + 1} \frac{1}{2}\frac{{w_{i} w_{2 + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]}},} \right. \hfill \\ \quad \frac{{\mathop \oplus \limits_{i = 1}^{l + 1} \frac{1}{2}\frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{i} }} } \right)^{P} \left( {1 - I_{{\tilde{a}_{l + 2} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{l + 1} \frac{1}{2}\frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]}}, \hfill \\ \quad \left. {\left. {\frac{{\mathop \oplus \limits_{i = 1}^{l + 1} \frac{1}{2}\frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{i} }} } \right)^{P} \left( {1 - F_{{\tilde{a}_{l + 2} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{l + 1} \frac{1}{2}\frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]}}} \right)} \right\rangle . \hfill \\ \end{aligned}$$That is, when k = l + 1, Eq. (29) is true.
-
(iii)
So, for all k, Eq. (29) is true. The following equation can be proved in a similar fashion, and the proof is omitted here.
$$\begin{aligned} \mathop \oplus \limits_{j = 1}^{k} \frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left( {\tilde{a}_{k + 1}^{p} \otimes \tilde{a}_{j}^{q} } \right) = \left\langle {\left[ {\mathop \oplus \limits_{j = 1}^{k} \frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left( {a_{k + 1,1}^{p} \otimes a_{j1}^{q} } \right),\mathop \oplus \limits_{j = 1}^{k} \frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left( {a_{k + 1,2}^{p} \otimes a_{j2}^{q} } \right),\mathop \oplus \limits_{j = 1}^{k} \frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left( {a_{k + 1,3}^{p} \otimes a_{j3}^{q} } \right),\mathop \oplus \limits_{j = 1}^{k} \frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left( {a_{k + 1,4}^{p} \otimes a_{j4}^{q} } \right)} \right],} \right. \hfill \\ \quad \left( {\frac{{\mathop \oplus \limits_{j = 1}^{k} \frac{1}{2}\frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left[ {a_{k + 1,3}^{p} \otimes a_{j3}^{q} - a_{k + 1,2}^{p} \otimes a_{j2}^{q} + a_{k + 1,4}^{p} \otimes a_{j4}^{q} - a_{k + 1,1}^{p} \otimes a_{j1}^{q} } \right]\left( {T_{{\tilde{a}_{k + 1} }} } \right)^{P} \left( {T_{{\tilde{a}_{j} }} } \right)^{q} }}{{\mathop \oplus \limits_{j = 1}^{k} \frac{1}{2}\frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left[ {a_{k + 1,3}^{p} \otimes a_{j3}^{q} - a_{k + 1,2}^{p} \otimes a_{j2}^{q} + a_{k + 1,4}^{p} \otimes a_{j4}^{q} - a_{k + 1,1}^{p} \otimes a_{j1}^{q} } \right]}},} \right. \hfill \\ \quad \frac{{\mathop \oplus \limits_{j = 1}^{k} \frac{1}{2}\frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left[ {a_{k + 1,3}^{p} \otimes a_{j3}^{q} - a_{k + 1,2}^{p} \otimes a_{j2}^{q} + a_{k + 1,4}^{p} \otimes a_{j4}^{q} - a_{k + 1,1}^{p} \otimes a_{j1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{k + 1} }} } \right)^{P} \left( {1 - I_{{\tilde{a}_{j} }} } \right)^{q} }}{{\mathop \oplus \limits_{j = 1}^{k} \frac{1}{2}\frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left[ {a_{k + 1,3}^{p} \otimes a_{j3}^{q} - a_{k + 1,2}^{p} \otimes a_{j2}^{q} + a_{k + 1,4}^{p} \otimes a_{j4}^{q} - a_{k + 1,1}^{p} \otimes a_{j1}^{q} } \right]}}, \hfill \\ \left. {\left. {\quad \frac{{\mathop \oplus \limits_{j = 1}^{k} \frac{1}{2}\frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left[ {a_{k + 1,3}^{p} \otimes a_{j3}^{q} - a_{k + 1,2}^{p} \otimes a_{j2}^{q} + a_{k + 1,4}^{p} \otimes a_{j4}^{q} - a_{k + 1,1}^{p} \otimes a_{j1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{k + 1} }} } \right)^{P} \left( {1 - F_{{\tilde{a}_{j} }} } \right)^{q} }}{{\mathop \oplus \limits_{j = 1}^{k} \frac{1}{2}\frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left[ {a_{k + 1,3}^{p} \otimes a_{j3}^{q} - a_{k + 1,2}^{p} \otimes a_{j2}^{q} + a_{k + 1,4}^{p} \otimes a_{j4}^{q} - a_{k + 1,1}^{p} \otimes a_{j1}^{q} } \right]}}} \right)} \right\rangle . \hfill \\ \end{aligned}$$(30)Using Eqs. (27), (29) and (20), Eq. (28) can be transformed as follows:
$$\begin{aligned} {\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{j}^{q} } \right) &=\, {\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{j}^{q} } \right) + \mathop \oplus \limits_{i = 1}^{k} \frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{k + 1}^{q} } \right) + \mathop \oplus \limits_{j = 1}^{k} \frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left( {\tilde{a}_{k + 1}^{p} \otimes \tilde{a}_{j}^{q} } \right). \hfill \\ &= \,\left\langle {\left[ {{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i1}^{p} a_{j1}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i2}^{p} a_{j2}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i3}^{p} a_{j3}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i4}^{p} a_{j4}^{q} } \right],} \right. \hfill \\ &\qquad \left( {\frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {T_{{\tilde{a}_{i} }} } \right)^{p} \left( {T_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}},} \right. \hfill \\ &\qquad \frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - I_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}}, \hfill \\ &\qquad\left. {\left. { \frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - F_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}}} \right)}\right\rangle . \hfill \\ \end{aligned}$$Then, when n = k + 1, Eq. (26) is true. Therefore, Eq. (26) is true for all \(n\).
-
(a)
-
2.
Using the SVTNN operations and Eq. (26), Eq. (15) can be obtained. This completes the proof of Theorem 3.
Appendix 2
Proof
For an arbitrary i, there are a i1 ≥ b i1, a i2 ≥ b i2, a i3 ≥ b i3, a i4 ≥ b i4; therefore, it is easy to obtain the following inequalities:
then
The truth-membership, indeterminacy-membership and falsity-membership parts can be proved using mathematical induction on n.
Then, using the new comparison method in Sect. 3.2, Theorem 3 can be proved.
Rights and permissions
About this article
Cite this article
Liang, Rx., Wang, Jq. & Li, L. Multi-criteria group decision-making method based on interdependent inputs of single-valued trapezoidal neutrosophic information. Neural Comput & Applic 30, 241–260 (2018). https://doi.org/10.1007/s00521-016-2672-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-016-2672-2