Skip to main content
Log in

Compression of face images using meta-heuristic algorithms based on curvelet transform with variable bit allocation

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

For valuable areas of a face image (such as the eyes, nose, and mouth) that contain detailed facial information, a higher bit rate may be assigned. If we can identify areas in an image that are of low importance, we can remove redundant information to an acceptable level. Meta-heuristic algorithms are capable of solving high-dimensional problems in the shortest time by finding the best answer among all possible solutions. In this article, meta-heuristic algorithms based on the curvelet transform are used to compress face images with high spatial resolution. Genetic algorithms, whales, gray wolves, and honey badgers are responsible for identifying these edges and important areas. In order to achieve maximum recognition accuracy, average PSNR and SSIM, the bit string lengths of each block are arranged to achieve the appropriate objective function estimation. As a case study, images from the FEI database are used. The performance of the curvelet transform method in evaluating the average PSNR and SSIM in this research shows significantly better performance when compared to the wavelet transform method when using the same meta-heuristic algorithms for the recognition accuracy values in the same conditions (equal recognition accuracy). As can be seen from the graph, the Whale optimization algorithm (WOA) has achieved the optimal response in most bit rates with a faster processing speed than most other algorithms. Evaluation of the results indicates that the curvelet transform method performs better in terms of extracting and displaying important details in the edges of the face image compared to the wavelet transform method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Chaudhary, P., Gupta, R., Singh, A.: Joint image compression and encryption using a novel column-wise scanning and optimization algorithm. Procedia Comput. Sci. 167, 244–253 (2020)

    Google Scholar 

  2. Lakshmi Praba V, Anitha S (2019) Removing coding and inter pixel redundancy in high intensity part of image. J Emerg Technol Innov Res (JETIR) 6(2)

  3. Bajit, A., Nahid, M., Tamtaoui, A., Benbrahim, M.: A psychovisual optimization of wavelet foveation-based image coding and quality assessment based on human quality criterions. Adv. Sci. Technol. Eng. Syst. J. 5(2), 225–234 (2020)

    Google Scholar 

  4. Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Image coding using wavelet transform. IEEE Trans. Image Process. 1(2), 205–220 (1992)

    Google Scholar 

  5. DeVore, R.A., Jawerth, B., Lucier, B.J.: Image compression through wavelet transform coding. IEEE Trans. Inform. 38(20), 719–746 (1992). (Special issue on <Emphasis Type="Italic">Wavelet Transforms and Multiresolution Signal Analysis</Emphasis>)

    MathSciNet  MATH  Google Scholar 

  6. Candès, E., Donoho, D.: Curvelets—a surprisingly effective nonadaptive representation for objects with edges. In: Cohen, A., Rabut, C., Schumaker, L. (eds.) Curves and Surface Fitting: Saint-Malo 1999, pp. 105–120. Vanderbilt University Press, Nashville (2000)

    Google Scholar 

  7. Bian, N., Liang, F., Fu, H., Lei, B.: A deep image compression framework for face recognition nding the optimum structure of CNN for face recognition. IEEE (2019)

  8. El-Kenawy, E.M., Mirjalili, S., Abdelhamid, A.A., Ibrahim, A., Khodadadi, N., Eid, M.M.: Meta-heuristic optimization and keystroke dynamics for authentication of smartphone users. Mathematics 10, 2912 (2022). https://doi.org/10.3390/math10162912

    Article  Google Scholar 

  9. Venugopal Reddy, C.H., Siddaiah, P.: Hybrid LWT-SVD watermarking optimized using metaheuristic algorithms along with encryption for medical image security. Signal Image Process. Int. J. (SIPIJ) 6(1), 75–95 (2015)

    Google Scholar 

  10. Hasan, M.K., Ahsan, M.S., Abdullah-Al-Mamun, Shah Newaz, S.H., Lee, G.M.: Human face detection techniques: a comprehensive review and future research directions. Electronics 10, 2354 (2021). https://doi.org/10.3390/electronics10192354

    Article  Google Scholar 

  11. Elad, M., Goldenberg, R., Kimmel, R.: Low bit-rate compression of facial images. IEEE Trans. Image Process. 16(9), 2379–2383 (2007)

    MathSciNet  Google Scholar 

  12. Moshtaghi, H.R., Eshlaghy, A.T., Motadel, M.R.: A comprehensive review on meta-heuristic algorithms and their classification with novel approach. J. Appl. Res. Ind. Eng. 6(3), 251–267 (2019)

    Google Scholar 

  13. Rikhtegara, A., Pooyanb, M., Manzuric, M.T.: Comparing performance of metaheuristic algorithms for. Int. J. Nonlinear Anal. Appl. 11(1), 301–319 (2020)

    Google Scholar 

  14. Emara, M.E., Abdel-Kader, R.F., Yasein, M.S.: Image compression using advanced optimization algorithms. J. Commun. (2017). https://doi.org/10.12720/jcm.12.5.271-278

    Article  Google Scholar 

  15. Kumar, A., Lekhraj, Singh, S., Kumar, A.: Grey wolf optimizer and other metaheuristic optimization techniques with image processing as their applications: a review. IOP Conf. Ser. Mater. Sci. Eng. 1136, 012053 (2021)

    Google Scholar 

  16. Oloyede, M., Hancke, G., Myburgh, H., Onumanyi, A.: A new evaluation function for face image enhancement in unconstrained environments using metaheuristic algorithms. EURASIP J. Image Video Process. (2019)

  17. Cuevas, E., Trujillo, A., Navarro, M.A., Diaz, P.: Comparison of recent metaheuristic algorithms for shape detection in images. Int. J. Comput. Intell. Syst. 13(1), 1059–1071 (2020)

    Google Scholar 

  18. Sheraj, M., Chopra, A.: Data compression algorithm for audio and image using feature extraction. In: 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP). (2020)

  19. Cuevas, E., Zaldívar, D., Perez-Cisneros, M.: Applications of Evolutionary Computation in Image Processing and Pattern Recognition. Intelligent Systems Reference Library, vol. 100. Springer, Cham (2026)

    MATH  Google Scholar 

  20. Geetha, K., Anitha, V., Elhoseny, M., Kathiresan, S., Shamsolmoali, P., Selim, M.M.: An evolutionary lion optimization algorithm-based image compression technique for biomedical applications. Expert Syst. (2020). https://doi.org/10.1111/exsy.12508

    Article  Google Scholar 

  21. Mascher-Kampfer, A., Stogner, H., Uhl, A.: Comparison of compression algorithms impact on fingerprint and face recognition accuracy. In: Proceedings of SPIE 6508, Visual Communications and Image Processing 2007, p 650810

  22. Vila-Forcen, J.E., Voloshynovskiy, S., Koval, O., Pun, T.: Facial image compression based on structured codebooks in overcomplete domain. EURASIP J. Appl. Signal Process. 2006(69042), 1–11 (2006)

    MATH  Google Scholar 

  23. Elad, M., Goldenberg, R., Kimmel, R.: Low bit-rate compression of facial images. IEEE Trans. Image Process 16, 2379–2383 (2007)

    MathSciNet  Google Scholar 

  24. Bencherqui, A., Daoui, A., Karmouni, H., Qjidaa, H., Alfidi, M., Sayyouri, M.: Optimal reconstruction and compression of signals and images by Hahn moments and artificial bee colony (ABC) algorithm. Multimedia Tools Appl. 81, 29753–29783 (2022)

    Google Scholar 

  25. Asiedu, L., Essah, B.O., Iddi, S., Doku-Amponsah, K., Mettle, F.O.: Evaluation of the DWT-PCA/SVD recognition algorithm on reconstructed frontal face images. J. Appl. Math. 2021, 5541522 (2021)

    MathSciNet  Google Scholar 

  26. https://paperswithcode.com/dataset/orl.

  27. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1090–1104 (2000)

    Google Scholar 

  28. Selimović, A., Hladnik, A.: Content-aware image compression with convolutional neural networks. Orig. Sci. Pap. https://doi.org/10.24867/GRID-2018-p56

  29. Prakash, A., Moran, N., Garber, S., DiLillo, A., Storer, J.: Semantic perceptual image compression using deep convolution networks. Comput. Vis. Pattern Recognit. (2017). https://doi.org/10.48550/arXiv.1612.08712

    Article  Google Scholar 

  30. Biswas, S., Sil, J., Maity, S.P.: On prediction error compressive sensing image reconstruction for face recognition. Comput. Electr. Eng. 1–14 (2017)

  31. He, T., Chen, Z.: End-to-End Facial Image Compression with Integrated Semantic Distortion Metric. IEEE. https://doi.org/10.1109/VCIP.2018.8698708

  32. Soni, N., Sharma, E.K., Kapoor, A.: Hybrid meta-heuristic algorithm based deep neural network for face recognition. J. Comput. Sci. 51, 101352 (2021)

    Google Scholar 

  33. Kurniawan, A.: Implementation of image compression using discrete cosine transform (DCT) and discrete wavelet transform (DWT). Int. J. Appl. Eng. Res. 12(23), 13951–13958 (2017)

    Google Scholar 

  34. Hussain, K., Salleh, M.N.M., Cheng, S., Shi, Y.: Metaheuristic research: a comprehensive survey. Artif. Intell. Rev. 52(4), 2191–2233 (2019)

    Google Scholar 

  35. Y. Liang, et al;“ Face hallucination with imprecise-alignment using iterative sparse representation”, Pattern Recognition (2014).

  36. Ravi Subban, Dattatreya Mankame, Sadique Nayeem, P. Pasupathi and S. Muthukumar; “Genetic Algorithm based Human Face Recognition,” Elsevier, 2014, Proc. of Int. Conf. on Advances in Communication, Network, and Computing, CNC.

  37. Yang, Y., Liu, J., Tan, S., Wang, H.: A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio. Appl. Soft Comput. J. 80, 42–56 (2019)

    Google Scholar 

  38. Ramadan, R.M., Abdel-Kader, R.F.: Face recognition using particle swarm optimization-based selected features. Int. J. Signal Process. Image Process. Pattern Recognit. 2(2), 51–65 (2009)

    Google Scholar 

  39. Kaur, S., Agarwal, P., Rana, R.S.: Ant colony optimization: a technique used for image processing. Int. J. Comput. Sci. Technol. IJCST 2(2), 173–175 (2011)

    Google Scholar 

  40. Qiuyu, Z., Suozhong, W.: Color personal ID photo compression based on object segmentation. In: IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, China (2005)

  41. Bala, J., Huang, J., Vafaie, H.: Hybrid learning using genetic algorithms and decision trees for pattern classification. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, vol. 1. pp. 719–724 (2012)

  42. Sun, Y., Yin, L.: A genetic algorithm based feature selection approach for 3D face recognition. In: Biometric consortium conference. USA, (2005).

  43. Liu, C., Wechsler, H.: Evolutionary pursuit and its application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 22(6), 570–582 (2000)

    Google Scholar 

  44. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(2008), 687–697 (2008)

    Google Scholar 

  45. https://www.researchgate.net/figure/Example-images-of-CIE-database_fig3_343240268

  46. https://fei.edu.br/~cet/facedatabase.html

  47. Jaafar, N.H., Sabudin, S., Ahmad, A.: Discrete curvelet transform algorithm for image compression system. Int. J. Adv. Trends Comput. Sci. Eng. 9(1), 166–169 (2020)

    Google Scholar 

  48. Nawaria, V., Soni, V., Kanawade, S.Y.: Image fusion technique based on hybrid whale optimization algorithm simulated annealing (hWOA-SA). Int. J. Innov. Technol. Explor. Eng. (IJITEE) 8(11), 19–24 (2019)

    Google Scholar 

  49. Kumari, P.D., Panigrahi, S.K., Narayana, M.: Image compression algorithm based on curvelet transforms and comparative analysis with JPEG and JPEG 2000. Int. J. Electron. Eng. Res. 9, 1373–1387 (2017)

    Google Scholar 

  50. Sannasi Chakravarthy, S.R., Rajaguru, H.: Fast and efficient image compression techniqueusing different encoding schemes. Int. J. Pure Appl. Math. 119(16), 4633–4640 (2018)

    Google Scholar 

  51. Kahu, S.Y., Bhurchandi, K.M.: JPEG-based variable block-size image compression using CIE La*b* color space. KSII Trans. Internet Inf. Syst. (2018). https://doi.org/10.3837/tiis.2018.10.023

    Article  Google Scholar 

  52. Pantanowitz, L., Liu, C., Huang, Y., Guo, H., Rohde, G.K.: Impact of altering various image parameters on human epidermal growth factor receptor 2 image analysis data quality. J. Pathol. Inform. 8, 39 (2017)

    Google Scholar 

  53. Giuliani, D.: Metaheuristic algorithms applied to color image segmentation on HSV space. J. Imaging 8, 1–6 (2022)

    Google Scholar 

  54. Khodadadi, R., Ardeshir, G., Grailu, H.: Compressing face images using genetic and gray wolf meta-heuristic algorithms based on variable bit allocation. Int. J. Eng. 36(4), 682–697 (2023)

    Google Scholar 

  55. Jino Ramson, S.R., Lova Raju, K., Vishnu, S., Anagnostopoulos, T.: Nature Inspired Optimization Techniques for Image Processing—A Short Review. Springer International Publishing AG, part of Springer Nature, Cham (2019)

    Google Scholar 

  56. Omari, M., Yaichi, S.: Image Compression Based on Genetic Algorithm Optimization. IEEE (2015)

  57. Xu, S., Chang, C.-C., Liu, Y.: A novel image compression technology based on vector quantisation and linear regression prediction. Connect. Sci. (2020). https://doi.org/10.1080/09540091.2020.1806206

    Article  Google Scholar 

  58. Al-Bundi, S.S., Abd, M.S.: A review on fractal image compression using optimization techniques. J. Al-Qadisiyah Comput. Sci. Math. 12(1), 38–48 (2020)

    Google Scholar 

  59. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Google Scholar 

  60. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Google Scholar 

  61. Nasiri, J., Khiyabani, F.M.: A whale optimization algorithm (WOA) approach for clustering. Cogent Math. Stat. 5(1), 1483565 (2018). https://doi.org/10.1080/25742558.2018.1483565

    Article  MathSciNet  MATH  Google Scholar 

  62. Ye, Z., Wang, F., Kochan, R.: Image enhancement based on whale optimization algorithm. In: Telecommunications and computer engineering (TCSET), February 2020

  63. Rajput, S.S., Bohat, V.K., Arya, K.V.: Grey Wolf Optimization Algorithm for Facial Image Super-Resolution. Springer Science+Business Media, LLC, part of Springer Nature, Berlin (2018)

    Google Scholar 

  64. Emary, E., Zawbaa, H.M., Hassanien, A.E.: Binary grey wolf optimization approaches for feature selection. Neurocomputing 172, 371–381 (2016). https://doi.org/10.1016/j.neucom.2015.06.083

    Article  Google Scholar 

  65. Begg, C., Begg, K., Du Toit, J., Mills, M.: Scent-marking behaviour of the honey badger, mellivora capensis (mustelidae), in the southern kalahari. Anim. Behav. 66(5), 917–929 (2003)

    Google Scholar 

  66. Begg, C., Begg, K., Du Toit, J., Mills, M.: Life-history variables of an atypical mustelid, the honey badger mellivora capensis. J. Zool. 265(1), 17–22 (2005)

    Google Scholar 

  67. Heptner, V.: Mammals of the Soviet Union: Vol. 2, Part 1b: Carnivora (Weasels, Additional Species). Smithsonian Institution Libraries & The National Science Foundation, Washington (2001)

    Google Scholar 

  68. Hussain, K., Salleh, M.N.M., Cheng, S., Shi, Y.: On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Comput. Appl. 31, 7665–7683 (2018)

    Google Scholar 

  69. Cui, D.: Application of whale optimization algorithm in reservoir optimal operation. Adv. Sci. Technol. Water Resour. 37(3), 72–79, 94 (2017)

    Google Scholar 

  70. Cheng, S., Shi, Y., Qin, Q., Zhang, Q., Bai, R.: Population diversity maintenance in brain storm optimization algorithm. J. Artif. Intell. Soft Comput. Res. 4(2), 83–97 (2014)

    Google Scholar 

  71. Jin, Y., Lee, H.J.: A block-based pass-parallel SPIHT algorithm. IEEE Trans. Circuits Syst. Video Technol. 22(7), 1064–1075 (2012)

    Google Scholar 

  72. Xiang, T., QuXiao, J.: Joint SPIHT compression and selective encryption. Appl. Soft Comput. 21, 159–170 (2014)

    Google Scholar 

  73. Satone, M., Kharate, G.: Feature selection using genetic algorithm for face recognition based on PCA, wavelet and SVM. Int. J. Electr. Eng. Inform. 6(1), 39–52 (2014)

    Google Scholar 

  74. Poon, B., Ashraful Amin, M., Yan, H.: Performance evaluation and comparison of PCA based humanface recognition methods for distorted images. Int. J. Mach. Learn. Cybern. 2, 245–259 (2011)

    Google Scholar 

  75. Timotius, I.K., Setyawan, I., Febrianto, A.: A Face recognition between two person using kernel principal component analysis and support vector machines. Int. J. Electr. Eng. Inf. 2(1), 55–63 (2010)

    Google Scholar 

Download references

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript.

Corresponding author

Correspondence to Gholamreza Ardeshir.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Communicated by Q. Shen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodadadi, R., Ardeshir, G. & Grailu, H. Compression of face images using meta-heuristic algorithms based on curvelet transform with variable bit allocation. Multimedia Systems 29, 3721–3744 (2023). https://doi.org/10.1007/s00530-023-01148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-023-01148-0

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy