Abstract
For valuable areas of a face image (such as the eyes, nose, and mouth) that contain detailed facial information, a higher bit rate may be assigned. If we can identify areas in an image that are of low importance, we can remove redundant information to an acceptable level. Meta-heuristic algorithms are capable of solving high-dimensional problems in the shortest time by finding the best answer among all possible solutions. In this article, meta-heuristic algorithms based on the curvelet transform are used to compress face images with high spatial resolution. Genetic algorithms, whales, gray wolves, and honey badgers are responsible for identifying these edges and important areas. In order to achieve maximum recognition accuracy, average PSNR and SSIM, the bit string lengths of each block are arranged to achieve the appropriate objective function estimation. As a case study, images from the FEI database are used. The performance of the curvelet transform method in evaluating the average PSNR and SSIM in this research shows significantly better performance when compared to the wavelet transform method when using the same meta-heuristic algorithms for the recognition accuracy values in the same conditions (equal recognition accuracy). As can be seen from the graph, the Whale optimization algorithm (WOA) has achieved the optimal response in most bit rates with a faster processing speed than most other algorithms. Evaluation of the results indicates that the curvelet transform method performs better in terms of extracting and displaying important details in the edges of the face image compared to the wavelet transform method.










Similar content being viewed by others
Data availability
Data will be made available on reasonable request.
References
Chaudhary, P., Gupta, R., Singh, A.: Joint image compression and encryption using a novel column-wise scanning and optimization algorithm. Procedia Comput. Sci. 167, 244–253 (2020)
Lakshmi Praba V, Anitha S (2019) Removing coding and inter pixel redundancy in high intensity part of image. J Emerg Technol Innov Res (JETIR) 6(2)
Bajit, A., Nahid, M., Tamtaoui, A., Benbrahim, M.: A psychovisual optimization of wavelet foveation-based image coding and quality assessment based on human quality criterions. Adv. Sci. Technol. Eng. Syst. J. 5(2), 225–234 (2020)
Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Image coding using wavelet transform. IEEE Trans. Image Process. 1(2), 205–220 (1992)
DeVore, R.A., Jawerth, B., Lucier, B.J.: Image compression through wavelet transform coding. IEEE Trans. Inform. 38(20), 719–746 (1992). (Special issue on <Emphasis Type="Italic">Wavelet Transforms and Multiresolution Signal Analysis</Emphasis>)
Candès, E., Donoho, D.: Curvelets—a surprisingly effective nonadaptive representation for objects with edges. In: Cohen, A., Rabut, C., Schumaker, L. (eds.) Curves and Surface Fitting: Saint-Malo 1999, pp. 105–120. Vanderbilt University Press, Nashville (2000)
Bian, N., Liang, F., Fu, H., Lei, B.: A deep image compression framework for face recognition nding the optimum structure of CNN for face recognition. IEEE (2019)
El-Kenawy, E.M., Mirjalili, S., Abdelhamid, A.A., Ibrahim, A., Khodadadi, N., Eid, M.M.: Meta-heuristic optimization and keystroke dynamics for authentication of smartphone users. Mathematics 10, 2912 (2022). https://doi.org/10.3390/math10162912
Venugopal Reddy, C.H., Siddaiah, P.: Hybrid LWT-SVD watermarking optimized using metaheuristic algorithms along with encryption for medical image security. Signal Image Process. Int. J. (SIPIJ) 6(1), 75–95 (2015)
Hasan, M.K., Ahsan, M.S., Abdullah-Al-Mamun, Shah Newaz, S.H., Lee, G.M.: Human face detection techniques: a comprehensive review and future research directions. Electronics 10, 2354 (2021). https://doi.org/10.3390/electronics10192354
Elad, M., Goldenberg, R., Kimmel, R.: Low bit-rate compression of facial images. IEEE Trans. Image Process. 16(9), 2379–2383 (2007)
Moshtaghi, H.R., Eshlaghy, A.T., Motadel, M.R.: A comprehensive review on meta-heuristic algorithms and their classification with novel approach. J. Appl. Res. Ind. Eng. 6(3), 251–267 (2019)
Rikhtegara, A., Pooyanb, M., Manzuric, M.T.: Comparing performance of metaheuristic algorithms for. Int. J. Nonlinear Anal. Appl. 11(1), 301–319 (2020)
Emara, M.E., Abdel-Kader, R.F., Yasein, M.S.: Image compression using advanced optimization algorithms. J. Commun. (2017). https://doi.org/10.12720/jcm.12.5.271-278
Kumar, A., Lekhraj, Singh, S., Kumar, A.: Grey wolf optimizer and other metaheuristic optimization techniques with image processing as their applications: a review. IOP Conf. Ser. Mater. Sci. Eng. 1136, 012053 (2021)
Oloyede, M., Hancke, G., Myburgh, H., Onumanyi, A.: A new evaluation function for face image enhancement in unconstrained environments using metaheuristic algorithms. EURASIP J. Image Video Process. (2019)
Cuevas, E., Trujillo, A., Navarro, M.A., Diaz, P.: Comparison of recent metaheuristic algorithms for shape detection in images. Int. J. Comput. Intell. Syst. 13(1), 1059–1071 (2020)
Sheraj, M., Chopra, A.: Data compression algorithm for audio and image using feature extraction. In: 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP). (2020)
Cuevas, E., Zaldívar, D., Perez-Cisneros, M.: Applications of Evolutionary Computation in Image Processing and Pattern Recognition. Intelligent Systems Reference Library, vol. 100. Springer, Cham (2026)
Geetha, K., Anitha, V., Elhoseny, M., Kathiresan, S., Shamsolmoali, P., Selim, M.M.: An evolutionary lion optimization algorithm-based image compression technique for biomedical applications. Expert Syst. (2020). https://doi.org/10.1111/exsy.12508
Mascher-Kampfer, A., Stogner, H., Uhl, A.: Comparison of compression algorithms impact on fingerprint and face recognition accuracy. In: Proceedings of SPIE 6508, Visual Communications and Image Processing 2007, p 650810
Vila-Forcen, J.E., Voloshynovskiy, S., Koval, O., Pun, T.: Facial image compression based on structured codebooks in overcomplete domain. EURASIP J. Appl. Signal Process. 2006(69042), 1–11 (2006)
Elad, M., Goldenberg, R., Kimmel, R.: Low bit-rate compression of facial images. IEEE Trans. Image Process 16, 2379–2383 (2007)
Bencherqui, A., Daoui, A., Karmouni, H., Qjidaa, H., Alfidi, M., Sayyouri, M.: Optimal reconstruction and compression of signals and images by Hahn moments and artificial bee colony (ABC) algorithm. Multimedia Tools Appl. 81, 29753–29783 (2022)
Asiedu, L., Essah, B.O., Iddi, S., Doku-Amponsah, K., Mettle, F.O.: Evaluation of the DWT-PCA/SVD recognition algorithm on reconstructed frontal face images. J. Appl. Math. 2021, 5541522 (2021)
Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1090–1104 (2000)
Selimović, A., Hladnik, A.: Content-aware image compression with convolutional neural networks. Orig. Sci. Pap. https://doi.org/10.24867/GRID-2018-p56
Prakash, A., Moran, N., Garber, S., DiLillo, A., Storer, J.: Semantic perceptual image compression using deep convolution networks. Comput. Vis. Pattern Recognit. (2017). https://doi.org/10.48550/arXiv.1612.08712
Biswas, S., Sil, J., Maity, S.P.: On prediction error compressive sensing image reconstruction for face recognition. Comput. Electr. Eng. 1–14 (2017)
He, T., Chen, Z.: End-to-End Facial Image Compression with Integrated Semantic Distortion Metric. IEEE. https://doi.org/10.1109/VCIP.2018.8698708
Soni, N., Sharma, E.K., Kapoor, A.: Hybrid meta-heuristic algorithm based deep neural network for face recognition. J. Comput. Sci. 51, 101352 (2021)
Kurniawan, A.: Implementation of image compression using discrete cosine transform (DCT) and discrete wavelet transform (DWT). Int. J. Appl. Eng. Res. 12(23), 13951–13958 (2017)
Hussain, K., Salleh, M.N.M., Cheng, S., Shi, Y.: Metaheuristic research: a comprehensive survey. Artif. Intell. Rev. 52(4), 2191–2233 (2019)
Y. Liang, et al;“ Face hallucination with imprecise-alignment using iterative sparse representation”, Pattern Recognition (2014).
Ravi Subban, Dattatreya Mankame, Sadique Nayeem, P. Pasupathi and S. Muthukumar; “Genetic Algorithm based Human Face Recognition,” Elsevier, 2014, Proc. of Int. Conf. on Advances in Communication, Network, and Computing, CNC.
Yang, Y., Liu, J., Tan, S., Wang, H.: A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio. Appl. Soft Comput. J. 80, 42–56 (2019)
Ramadan, R.M., Abdel-Kader, R.F.: Face recognition using particle swarm optimization-based selected features. Int. J. Signal Process. Image Process. Pattern Recognit. 2(2), 51–65 (2009)
Kaur, S., Agarwal, P., Rana, R.S.: Ant colony optimization: a technique used for image processing. Int. J. Comput. Sci. Technol. IJCST 2(2), 173–175 (2011)
Qiuyu, Z., Suozhong, W.: Color personal ID photo compression based on object segmentation. In: IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, China (2005)
Bala, J., Huang, J., Vafaie, H.: Hybrid learning using genetic algorithms and decision trees for pattern classification. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, vol. 1. pp. 719–724 (2012)
Sun, Y., Yin, L.: A genetic algorithm based feature selection approach for 3D face recognition. In: Biometric consortium conference. USA, (2005).
Liu, C., Wechsler, H.: Evolutionary pursuit and its application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 22(6), 570–582 (2000)
Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(2008), 687–697 (2008)
https://www.researchgate.net/figure/Example-images-of-CIE-database_fig3_343240268
Jaafar, N.H., Sabudin, S., Ahmad, A.: Discrete curvelet transform algorithm for image compression system. Int. J. Adv. Trends Comput. Sci. Eng. 9(1), 166–169 (2020)
Nawaria, V., Soni, V., Kanawade, S.Y.: Image fusion technique based on hybrid whale optimization algorithm simulated annealing (hWOA-SA). Int. J. Innov. Technol. Explor. Eng. (IJITEE) 8(11), 19–24 (2019)
Kumari, P.D., Panigrahi, S.K., Narayana, M.: Image compression algorithm based on curvelet transforms and comparative analysis with JPEG and JPEG 2000. Int. J. Electron. Eng. Res. 9, 1373–1387 (2017)
Sannasi Chakravarthy, S.R., Rajaguru, H.: Fast and efficient image compression techniqueusing different encoding schemes. Int. J. Pure Appl. Math. 119(16), 4633–4640 (2018)
Kahu, S.Y., Bhurchandi, K.M.: JPEG-based variable block-size image compression using CIE La*b* color space. KSII Trans. Internet Inf. Syst. (2018). https://doi.org/10.3837/tiis.2018.10.023
Pantanowitz, L., Liu, C., Huang, Y., Guo, H., Rohde, G.K.: Impact of altering various image parameters on human epidermal growth factor receptor 2 image analysis data quality. J. Pathol. Inform. 8, 39 (2017)
Giuliani, D.: Metaheuristic algorithms applied to color image segmentation on HSV space. J. Imaging 8, 1–6 (2022)
Khodadadi, R., Ardeshir, G., Grailu, H.: Compressing face images using genetic and gray wolf meta-heuristic algorithms based on variable bit allocation. Int. J. Eng. 36(4), 682–697 (2023)
Jino Ramson, S.R., Lova Raju, K., Vishnu, S., Anagnostopoulos, T.: Nature Inspired Optimization Techniques for Image Processing—A Short Review. Springer International Publishing AG, part of Springer Nature, Cham (2019)
Omari, M., Yaichi, S.: Image Compression Based on Genetic Algorithm Optimization. IEEE (2015)
Xu, S., Chang, C.-C., Liu, Y.: A novel image compression technology based on vector quantisation and linear regression prediction. Connect. Sci. (2020). https://doi.org/10.1080/09540091.2020.1806206
Al-Bundi, S.S., Abd, M.S.: A review on fractal image compression using optimization techniques. J. Al-Qadisiyah Comput. Sci. Math. 12(1), 38–48 (2020)
Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)
Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
Nasiri, J., Khiyabani, F.M.: A whale optimization algorithm (WOA) approach for clustering. Cogent Math. Stat. 5(1), 1483565 (2018). https://doi.org/10.1080/25742558.2018.1483565
Ye, Z., Wang, F., Kochan, R.: Image enhancement based on whale optimization algorithm. In: Telecommunications and computer engineering (TCSET), February 2020
Rajput, S.S., Bohat, V.K., Arya, K.V.: Grey Wolf Optimization Algorithm for Facial Image Super-Resolution. Springer Science+Business Media, LLC, part of Springer Nature, Berlin (2018)
Emary, E., Zawbaa, H.M., Hassanien, A.E.: Binary grey wolf optimization approaches for feature selection. Neurocomputing 172, 371–381 (2016). https://doi.org/10.1016/j.neucom.2015.06.083
Begg, C., Begg, K., Du Toit, J., Mills, M.: Scent-marking behaviour of the honey badger, mellivora capensis (mustelidae), in the southern kalahari. Anim. Behav. 66(5), 917–929 (2003)
Begg, C., Begg, K., Du Toit, J., Mills, M.: Life-history variables of an atypical mustelid, the honey badger mellivora capensis. J. Zool. 265(1), 17–22 (2005)
Heptner, V.: Mammals of the Soviet Union: Vol. 2, Part 1b: Carnivora (Weasels, Additional Species). Smithsonian Institution Libraries & The National Science Foundation, Washington (2001)
Hussain, K., Salleh, M.N.M., Cheng, S., Shi, Y.: On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Comput. Appl. 31, 7665–7683 (2018)
Cui, D.: Application of whale optimization algorithm in reservoir optimal operation. Adv. Sci. Technol. Water Resour. 37(3), 72–79, 94 (2017)
Cheng, S., Shi, Y., Qin, Q., Zhang, Q., Bai, R.: Population diversity maintenance in brain storm optimization algorithm. J. Artif. Intell. Soft Comput. Res. 4(2), 83–97 (2014)
Jin, Y., Lee, H.J.: A block-based pass-parallel SPIHT algorithm. IEEE Trans. Circuits Syst. Video Technol. 22(7), 1064–1075 (2012)
Xiang, T., QuXiao, J.: Joint SPIHT compression and selective encryption. Appl. Soft Comput. 21, 159–170 (2014)
Satone, M., Kharate, G.: Feature selection using genetic algorithm for face recognition based on PCA, wavelet and SVM. Int. J. Electr. Eng. Inform. 6(1), 39–52 (2014)
Poon, B., Ashraful Amin, M., Yan, H.: Performance evaluation and comparison of PCA based humanface recognition methods for distorted images. Int. J. Mach. Learn. Cybern. 2, 245–259 (2011)
Timotius, I.K., Setyawan, I., Febrianto, A.: A Face recognition between two person using kernel principal component analysis and support vector machines. Int. J. Electr. Eng. Inf. 2(1), 55–63 (2010)
Funding
There is no funding.
Author information
Authors and Affiliations
Contributions
All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
There is no conflict of interest.
Additional information
Communicated by Q. Shen.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Khodadadi, R., Ardeshir, G. & Grailu, H. Compression of face images using meta-heuristic algorithms based on curvelet transform with variable bit allocation. Multimedia Systems 29, 3721–3744 (2023). https://doi.org/10.1007/s00530-023-01148-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00530-023-01148-0