Abstract
This work presents the mathematical modeling for the nonlinear vibration analysis of membrane and shell structures of arbitrary shape. These structures are usually the optimal form in many engineering applications. However, they may buckle under specific loading conditions and, in most cases, are sensitive to geometric imperfections. These structures when liable to unstable buckling present for load levels lower than the static critical load a multiwell potential functions, which has an underlying influence on the nonlinear dynamic behavior and stability of the structure in a dynamic environment. The energy barrier of each well is a key factor, and depending on the force control parameters and initial conditions, intra-well and cross-well motions may occur. Also coexisting attractors are the norm, influencing the structure's dynamic integrity. In these structures, escape from a potential well is preceded by global and local bifurcations, usually leading to chaos, which influence the number of coexisting attractor, their period and the topology of the basins of attraction. In the present work, three problems are addressed: an axially loaded cylindrical shell, a pressure-loaded spherical cap and a spherical membrane under internal pressure. These problems illustrate the possible multiwell functions observed in several membrane and shell problems, namely potential functions with one, two and three (symmetric or asymmetric) potential wells. A detailed parametric analysis is conducted through bifurcation diagrams of the Poincaré map, time responses and Floquet stability criterion to clarify the influence of the multiwell potential function on the bifurcation scenario, basins of attraction and system safety.






























Similar content being viewed by others
References
Brush, D.O., Almroth, B.O.: Buckling of Bars. Plates and Shells. McGraw-Hill, New York (1975)
Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Cambridge (2008)
Jenkins, C. H.: Gossamer spacecraft: membrane and inflatable structures technology for space applications. In: AIAA (2001)
Shell Buckling (2019). https://shellbuckling.com/index.php. Accessed in 12 Nov 2019
Ramm, E., Wall, W.A.: Shell structures—a sensitive interrelation between physics and numerics. Int. J. Numer. Methods Eng. 60(1), 381–427 (2004). https://doi.org/10.1002/nme.967
Batista, R.C., Gonçalves, P.B.: Nonlinear lower bounds for shell buckling design. J. Construct. Steel Res. 28(2), 101–120 (1994). https://doi.org/10.1016/0143-974X(94)90037-X
Wagner, H.N.R., Sosa, E.M., Ludwig, T., Croll, J.G.A., Hühne, C.: Robust design of imperfection sensitive thin-walled shells under axial compression, bending or external pressure. Int. J. Mech. Sci. 156, 205–220 (2019). https://doi.org/10.1016/j.ijmecsci.2019.02.047
Hutchinson, J.W., Thompson, J.M.T.: Imperfections and energy barriers in shell buckling. Int. J. of Solids Struct. 148, 157–168 (2018). https://doi.org/10.1016/j.ijsolstr.2018.01.030
Thompson, J.M.T.: Advances in shell buckling: theory and experiments. Int. J. Bifurc. Chaos (2015). https://doi.org/10.1142/S0218127415300013
Morais, J.L., Silva, F.M.A.: Influence of modal coupling and geometrical imperfections on the nonlinear buckling of cylindrical panels under static axial load. Eng. Struct. 183, 816–829 (2019). https://doi.org/10.1016/j.engstruct.2018.12.032
Yamada, S., Croll, J.G.: Buckling behavior of pressure loaded cylindrical panels. J. Eng. Mech. 115(2), 327–344 (1989)
Gonçalves, P.B., Croll, J.G.: Axisymmetric buckling of pressure-loaded spherical caps. J. Struct. Eng. 118(4), 970–985 (1992)
Thompson, J.M.T., VanderHeijden, G.H.M.: Quantified “shock-sensitivity” above the Maxwell load. Int. J. Bifurc. Chaos 24, 3 (2014). https://doi.org/10.1142/s0218127414300092
Pamplona, D.C., Goncalves, P.B., Lopes, S.R.X.: Finite deformations of cylindrical membrane under internal pressure. Int. J. Mech. Sci. 48(6), 683–696 (2006). https://doi.org/10.1016/j.ijmecsci.2005.12.007
Patil, A., Nordmark, A., Eriksson, A.: Free and constrained inflation of a pre-stretched cylindrical membrane. Proc. R. Soc. A Math. Phys. Eng. Sci. (2014). https://doi.org/10.1098/rspa.2014.0282
Patil, A., Nordmark, A., Eriksson, A.: Instability investigation on fluid-loaded pre-stretched cylindrical membranes. Proc. R. Soc. A Math. Phys. Eng. Sci. (2015). https://doi.org/10.1098/rspa.2015.0016
Soares, R.M., Amaral, P.F., Silva, F.M., Gonçalves, P.B.: Nonlinear breathing motions and instabilities of a pressure-loaded spherical hyperelastic membrane. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-04855-4
Gonçalves, P.B., Pamplona, D., Lopes, S.R.X.: Finite deformations of an initially stressed cylindrical shell under internal pressure. Int. J. Mech. Sci. 50(1), 92–103 (2008). https://doi.org/10.1016/j.ijmecsci.2007.05.001
Horný, L., Netušil, M., Horák, Z.: Limit point instability in pressurization of anisotropic finitely extensible hyperelastic thin-walled tube. Int. J. Nonlinear Mech. 77, 107–114 (2015). https://doi.org/10.1016/j.ijnonlinmec.2015.08.003
Anani, Y., Rahimi, G.: On the stability of internally pressurized thick-walled spherical and cylindrical shells made of functionally graded incompressible hyperelastic material. Lat. Am. J. Solids Struct. (2018). https://doi.org/10.1590/1679-78254322
Kebadze, E., Guest, S.D., Pellegrino, S.: Bistable prestressed shell structures. Int. J. Solids Struct. 41(11–12), 2801–2820 (2004). https://doi.org/10.1016/j.ijsolstr.2004.01.028
Dai, F., Li, H., Du, S.: Design and analysis of a tri-stable structure based on bi-stable laminates. Compos. A Appl. Sci. Manuf. 43(9), 1497–1504 (2012). https://doi.org/10.1016/j.compositesa.2012.03.018
Overvelde, J.T., Kloek, T., D’haen, J.J., Bertoldi, K.: Amplifying the response of soft actuators by harnessing snap-through instabilities. Proc. Natl. Acad. Sci. 112(35), 10863–10868 (2015)
Lee, A., López Jiménez, F., Marthelot, J., Hutchinson, J.W., Reis, P.M.: The geometric role of precisely engineered imperfections on the critical buckling load of spherical elastic shells. J. Appl. Mech. (2016). https://doi.org/10.1115/1.4034431
Thompson, J.M.T.: Chaotic phenomena triggering the escape from a potential well. Proc. R. Soc. A Math. Phys. Sci. 421(1861), 195–225 (1989). https://doi.org/10.1098/rspa.1989.0009
Lansbury, A.N., Thompson, J.M.T.: Incursive fractals: a robust mechanism of basin erosion preceding the optimal escape from a potential well. Phys. Lett. A 150(8–9), 355–361 (1990). https://doi.org/10.1016/0375-9601(90)90231-C
Stewart, H.B., Thompson, J.M.T., Ueda, Y., Lansbury, A.N.: Optimal escape from potential wells-patterns of regular and chaotic bifurcation. Physica D 85(1–2), 259–295 (1995). https://doi.org/10.1016/0167-2789(95)00172-Z
Thompson, J.M.T., DeSouza, J.R.: Suppression of escape by resonant modal interactions: in shell vibration and heave-roll capsize. Proc. R. Soc. A Math. Phys. Eng. Sci. 452(1954), 2527–2550 (1996). https://doi.org/10.1098/rspa.1996.0135
Moon, F.C., Li, G.X.: The fractal dimension of the two-well potential strange attractor. Physica D 17(1), 99–108 (1985). https://doi.org/10.1016/0167-2789(85)90137-X
Moon, F.C., Li, G.X.: Fractal basin boundaries and homoclinic orbits for periodic motion in a two-well potential. Phys. Rev. Lett. 55(14), 1439–1442 (1985). https://doi.org/10.1103/PhysRevLett.55.1439
Moon, F.C., Johnson, M.A., Holmes, W.T.: Controlling chaos in a two-well oscillator. Int. J. Bifurc. Chaos 6(02), 337–347 (1996). https://doi.org/10.1142/s0218127496000084
Ueda, Y., Nakajima, H., Hikihara, T., Stewart, H.B.: Forced two-well potential Duffing’s oscillator. In: Salam, F.M.A., Levi, M.L. (eds.) Dynamical Systems Approaches to Nonlinear Problems in Systems and Circuits, pp. 128–137. SIAM, Philadelphia (1988)
Szemplinska-Stupnicka, W., Rudowski, J.: Local methods in predicting occurrence of chaos in two-well potential systems: superharmonic frequency region. J. Sound Vib. 152(1), 57–72 (1992). https://doi.org/10.1016/0022-460X(92)90065-6
Szemplińska-Stupnicka, W.: Cross-well chaos and escape phenomena in driven oscillators. Nonlinear Dyn. 3(3), 225–243 (1992)
Venkatesan, A., Lakshmanan, M.: Bifurcation and chaos in the two-well Duffing-Van der Pol oscillator: numerical and analytical studies. Phys. Rev. E 56(6), 1–15 (1997). https://doi.org/10.1103/PhysRevE.56.6321
Lenci, S., Rega, G.: Controlling nonlinear dynamics in a two-well impact system I Attractors and bifurcation scenario under symmetric excitations. Int. J. Bifurc. Chaos 8(12), 2387–2407 (1998). https://doi.org/10.1142/S0218127498001911
Siewe, M.S., Cao, H., Sanjuán, M.A.: Effect of nonlinear dissipation on the basin boundaries of a driven two-well Rayleigh-Duffing oscillator. Chaos Solitons Fractals 39(3), 1092–1099 (2009). https://doi.org/10.1016/j.chaos.2007.05.007
Udani, J.P., Arrieta, A.F.: Efficient potential well escape for bi-stable Duffing oscillators. Nonlinear Dyn. 92(3), 1045–1059 (2018). https://doi.org/10.1007/s11071-018-4107-3
Litak, G., Borowiec, M.: Oscillators with asymmetric single and double well potentials: transition to chaos revisited. Acta Mech. 184(1–4), 47–59 (2006). https://doi.org/10.1007/s00707-006-0340-9
Theocharis, G., Kevrekidis, P.G., Frantzeskakis, D.J., Schmelcher, P.: Symmetry breaking in symmetric and asymmetric two-well potentials. Phys. Rev. E (2006). https://doi.org/10.1103/physreve.74.056608
Li, G.X., Moon, F.C.: Criteria for chaos of a three-well potential oscillator with homoclinic and heteroclinic orbits. J. Sound Vib. 136(1), 17–34 (1990). https://doi.org/10.1016/0022-460x(90)90934-r
Jing, Z., Huang, J., Deng, J.: Complex dynamics in three-well Duffing system with two external forcings. Chaos Solitons Fractals 33(3), 795–812 (2007). https://doi.org/10.1016/j.chaos.2006.03.071
Yang, X., Xu, W., Sun, Z., Fang, T.: Effect of bounded noise on chaotic motion of a triple-well potential system. Chaos Solitons Fractals 25(2), 415–424 (2005). https://doi.org/10.1016/j.chaos.2004.12.005
Siewe, M.S., Cao, H., Sanjuán, M.A.: On the occurrence of chaos in a parametrically driven extended Rayleigh oscillator with three-well potential. Chaos Solitons Fractals 41(2), 772–782 (2009). https://doi.org/10.1016/j.chaos.2008.03.013
Arathi, S., Rajasekar, S.: Impact of the depth of the wells and multifractal analysis on stochastic resonance in a triple-well system. Physica Scr. (2011). https://doi.org/10.1088/0031-8949/84/06/065011
Kubenko, V.D., Koval’chuk, P.S.: Nonlinear problems of the vibration of thin shells (review). Int. Appl. Mech. 34, 703–728 (1998)
Amabili, M., Païdoussis, M.P.: Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction. Appl. Mech. Rev. 56(4), 349–381 (2003). https://doi.org/10.1115/1.1565084
Moussaoui, F., Benamar, R.: Nonlinear vibrations of shell-type structures: a review with bibliography. J. Sound Vib. 255(1), 161–184 (2002)
Alijani, F., Amabili, M.: Nonlinear vibrations of shells: a literature review from 2003 to 2013. Int. J. Nonlinear Mech. 58, 233–257 (2014). https://doi.org/10.1016/j.ijnonlinmec.2013.09.012
Chang, S.I., Bajaj, A.K., Krousgrill, C.M.: Nonlinear vibrations and chaos in harmonically excited rectangular plates with one-to-one internal resonance. Nonlinear Dyn. 4(5), 433–460 (1993)
Popov, A.A., Thompson, J.M.T., McRobie, F.A.: Chaotic energy exchange through auto-parametric resonance in cylindrical shells. J. Sound Vib. 248(3), 395–411 (2001). https://doi.org/10.1006/jsvi.2000.3794
Soliman, M.S., Gonçalves, P.B.: Chaotic behavior resulting in transient and steady state instabilities of pressure-loaded shallow spherical shells. J. Sound Vib. 259(3), 497–512 (2003). https://doi.org/10.1006/jsvi.2002.5163
Touzé, C., Thomas, O., Amabili, M.: Transition to chaotic vibrations for harmonically forced perfect and imperfect circular plates. Int. J. Nonlinear Mech. 46(1), 234–246 (2011). https://doi.org/10.1016/j.ijnonlinmec.2010.09.004
Amabili, M.: Nonlinear vibrations of doubly curved shallow shells. Int. J. Nonlinear Mech. 40(5), 683–710 (2005). https://doi.org/10.1016/j.ijnonlinmec.2004.08.007
Krysko, A.V., Awrejcewicz, J., Kuznetsova, E.S., Krysko, V.A.: Chaotic vibrations of closed cylindrical shells in a temperature field. Int. J. Bifurc. Chaos 18(05), 1515–1529 (2008). https://doi.org/10.1142/S0218127408021130
Awrejcewicz, J., Krysko, V.A., Shchekaturova, T.V.: Transitions from regular to chaotic vibrations of spherical and conical axially-symmetric shells. Int. J. Struct. Stab. Dyn. 5, 359–385 (2005). https://doi.org/10.1142/S0219455405001623
Pellicano, F., Barbieri, M.: Complex dynamics of circular cylindrical shells. Int. J. Nonlinear Mech. 65, 196–212 (2014). https://doi.org/10.1016/j.ijnonlinmec.2014.05.006
Pellicano, F., Amabili, M.: Dynamic instability and chaos of empty and fluid-filled circular cylindrical shells under periodic axial loads. J. Sound Vib. 293(1–2), 227–252 (2006). https://doi.org/10.1016/j.jsv.2005.09.032
Ogden, R.W.: Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. A Math. Phys. Sci. 326(1567), 565–584 (1972). https://doi.org/10.1098/rspa.1972.0026
Gonçalves, P.B., Del Prado, Z.J.G.N.: Nonlinear oscillations and stability of parametrically excited cylindrical shells. Meccanica 37(6), 569–597 (2002). https://doi.org/10.1023/A:1020972109600
Gonçalves, P.B., Del Prado, Z.J.G.N.: Effect of nonlinear modal interaction on the dynamic instability of axially excited cylindrical shells. Comput. Struct. 82(32), 2621–2634 (2004). https://doi.org/10.1016/j.compstruc.2004.04.020
Gonçalves, P.B., Del Prado, Z.J.G.N.: Low-dimensional galerkin models for nonlinear vibration and instability analysis of cylindrical shells. Nonlinear Dyn. 41, 129–145 (2005). https://doi.org/10.1007/s11071-005-2802-3
Goncalves, P.B., Silva, F.M.A., Prado, Z.J.G.N.: Low-dimensional models for the nonlinear vibration analysis of cylindrical shells based on a perturbation procedure and proper orthogonal decomposition. J. Sound Vib. 315, 641–663 (2008). https://doi.org/10.1016/j.jsv.2008.01.063
Rodrigues, L., Gonçalves, P.B., Silva, F.M.A., Prado, Z.J.G.N.: Effects of modal coupling on the dynamics of parametrically and directly excited cylindrical shells. Thin Walled Struct. 81, 210–224 (2013). https://doi.org/10.1016/j.tws.2013.08.004
Silva F.M.A., Prado, Z.J.G.N., Gonçalves, P.B.: On the influence of a companion mode on the nonlinear oscillations of fluid-filled cylindrical shells. In: Proceedings of the 20th ABCM International Congress of Mechanical Engineering. ABCM, Gramado, RS, Brazil
Lenci, S., Orlando, D., Rega, G., Gonçalves, P.B.: Controlling practical stability and safety of mechanical systems by exploiting chaos properties. Chaos Interdiscip. J. Nonlinear Sci. (2012). https://doi.org/10.1063/1.4746094
Rega, G., Lenci, S., Ruzziconi, L.: Dynamical integrity: a novel paradigm for evaluating load carrying capacity. In: Global Nonlinear Dynamics for Engineering Design and System Safety, Springer, pp. 27–112 (2019)
Gonçalves, P.B.: Axisymmetric vibrations of imperfect shallow spherical caps under pressure loading. J. Sound Vib. 174, 249–260 (1994). https://doi.org/10.1006/jsvi.1994.1274
Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (2008)
Amabili, M.: Nonlinear damping in nonlinear vibrations of rectangular plates: derivation from viscoelasticity and experimental validation. J. Mech. Phys. Solids 118, 275–292 (2018). https://doi.org/10.1016/j.jmps.2018.06.004
Amabili, M.: Nonlinear damping in large-amplitude vibrations: modelling and experiments. Nonlinear Dyn. 93, 5–18 (2018). https://doi.org/10.1007/s11071-017-3889-z
Balasubramanian, P., Ferrari, G., Amabili, M.: Identification of the viscoelastic response and nonlinear damping of a rubber plate in nonlinear vibration regime. Mech. Syst. Signal Process. 111, 376–398 (2018). https://doi.org/10.1016/j.ymssp.2018.03.061
Twizell, E.H., Ogden, R.W.: Nonlinear optimization of the material constants in Ogden’s stress-deformation function for incompressible isotropic elastic materials. ANZIAM J 24(4), 424–434 (1983)
Ogden, R.W., Saccomandi, G., Sgura, I.: Fitting hyperelastic models to experimental data. Comp. Mech. 34(6), 484–502 (2004). https://doi.org/10.1007/s00466-004-0593-y
Jones, D.F., Treloar, L.R.G.: The properties of rubber in pure homogeneous strain. J. Phys. D Appl. Phys. 8, 1285–1304 (1975). https://doi.org/10.1088/0022-3727/8/11/007
Treloar, L.R.G.: Stress–strain data for vulcanized rubber under various types of deformation. Trans. Faraday Soc. 40, 59–70 (1944). https://doi.org/10.1039/tf9444000059
Selvadurai, A.P.S.: Deflections of a rubber membrane. J. Mech. Phys. Solids 54(6), 1093–1119 (2006). https://doi.org/10.1016/j.jmps.2006.01.001
Hsu, C.S.: Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems, vol. 64. Springer, Berlin (2013)
Sun, J.Q., Luo, A.C. (eds.): Global Analysis of Nonlinear Dynamics, vol. 2. Springer, Berlin (2012)
Acknowledgements
The authors acknowledge the financial support of the Brazilian research agencies, CNPq (Grant Numbers 301355/2018-5, 164925/2017-1, 303995/2017-3, 401418/2016-2), FAPERJ-CNE (Grant Number E-26/203.020/2015) and CAPES (Finance Code 001 and 88881.310620/2018-01).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A
Appendix A
For the cylindrical shell model, equations of motion of the reduced 2DOF model after Galerkin discretization (20) are given by [60]:
where
Rights and permissions
About this article
Cite this article
Silva, F.M.A., Soares, R.M., del Prado, Z.G.N. et al. Intra-well and cross-well chaos in membranes and shells liable to buckling. Nonlinear Dyn 102, 877–906 (2020). https://doi.org/10.1007/s11071-020-05661-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-020-05661-z