Skip to main content

Utilizing the wavelet transform’s structure in compressed sensing

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Compressed sensing has empowered quality image reconstruction with fewer data samples than previously thought possible. These techniques rely on a sparsifying linear transformation. The Daubechies wavelet transform is commonly used for this purpose. In this work, we take advantage of the structure of this wavelet transform and identify an affine transformation that increases the sparsity of the result. After inclusion of this affine transformation, we modify the resulting optimization problem to comply with the form of the Basis Pursuit Denoising problem. Finally, we show theoretically that this yields a lower bound on the error of the reconstruction and present results where solving this modified problem yields images of higher quality for the same sampling patterns using both magnetic resonance and optical images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adcock, B., Hansen, A., Roman, B.: The quest for optimal sampling: computationally efficient, structure-exploiting measurements for compressed sensing. Math. FA 1403 (2014)

  2. Adcock, B., Hansen, A.C., Poon, C., Roman, B.: Breaking the coherence barrier: a new theory for compressed sensing. In: Forum of Mathematics, Sigma, vol. 5. Cambridge University Press (2017)

  3. Antun, V., Renna, F., Poon, C., Adcock, B., Hansen, A.C.: On instabilities of deep learning in image reconstruction-does AI come at a cost? arXiv:1902.05300 (2019)

  4. Asif, M.S., Romberg, J.: Fast and accurate algorithms for re-weighted \(\ell _1\)-norm minimization. IEEE Trans. Signal Process. 61(23), 5905–5916 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baron, C.A., Dwork, N., Pauly, J.M., Nishimura, D.G.: Rapid compressed sensing reconstruction of 3D non-Cartesian MRI. Magn. Reson. Med. 79(5), 2685–2692 (2018)

    Article  Google Scholar 

  6. Bastounis, A., Adcock, B., Hansen, A.: From global to local: getting more from compressed sensing. SIAM News (2017)

  7. Bastounis, A., Hansen, A.C.: On the absence of the RIP in real-world applications of compressed sensing and the RIP in levels. arXiv:1411.4449 (2014)

  8. Bastounis, A., Hansen, A.C.: On the absence of uniform recovery in many real-world applications of compressed sensing and the restricted isometry property and nullspace property in levels. SIAM J. Imaging Sci. 10(1), 335–371 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Becker, S., Bobin, J., Candès, E.J.: NESTA: a fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4(1), 1–39 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Blunck, Y., Kolbe, S.C., Moffat, B.A., Ordidge, R.J., Cleary, J.O., Johnston, L.A.: Compressed sensing effects on quantitative analysis of undersampled human brain sodium MRI. Magn. Reson. Med. 83(3), 1025–1033 (2020)

    Article  Google Scholar 

  12. Bracewell, R.N.: Two-Dimensional Imaging. Prentice-Hall Inc., Upper Saddle River (1995)

    MATH  Google Scholar 

  13. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Candès, E.J., Wakin, M.B.: An introduction to compressive sampling [a sensing/sampling paradigm that goes against the common knowledge in data acquisition]. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Google Scholar 

  15. Candès, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted \(\ell \)1 minimization. J. Fourier Anal. Appl. 14(5–6), 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3869–3872. IEEE (2008)

  17. Chen, S., Donoho, D.: Basis pursuit. In: Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 41–44. IEEE (1994)

  18. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheng, J.Y., Zhang, T., Ruangwattanapaisarn, N., Alley, M.T., Uecker, M., Pauly, J.M., Lustig, M., Vasanawala, S.S.: Free-breathing pediatric MRI with nonrigid motion correction and acceleration. J. Magn. Reson. Imaging 42(2), 407–420 (2015)

    Article  Google Scholar 

  20. Choi, K., Wang, J., Zhu, L., Suh, T.S., Boyd, S., Xing, L.: Compressed sensing based cone-beam computed tomography reconstruction with a first-order method a. Med. Phys. 37(9), 5113–5125 (2010)

    Article  Google Scholar 

  21. Cukur, T., Lustig, M., Saritas, E.U., Nishimura, D.G.: Signal compensation and compressed sensing for magnetization-prepared MR angiography. IEEE Trans. Med. Imaging 30(5), 1017–1027 (2011)

    Article  Google Scholar 

  22. Dai, G., He, Z., Sun, H.: Ultrasonic block compressed sensing imaging reconstruction algorithm based on wavelet sparse representation. Curr Med Imaging 16(3), 262–272 (2020)

    Article  Google Scholar 

  23. Dar, S.U., Yurt, M., Shahdloo, M., Ildız, M.E., Tınaz, B., Çukur, T.: Prior-guided image reconstruction for accelerated multi-contrast MRI via generative adversarial networks. IEEE J Sel Topics Signal Proc 14(6), 1072–1087 (2020)

    Article  Google Scholar 

  24. Datta, S., Deka, B.: Group-sparsity based compressed sensing reconstruction for fast parallel MRI. In: International Conference on Pattern Recognition and Machine Intelligence, pp. 70–77. Springer (2019)

  25. Dwork, N., Baron, C.A., Johnson, E., O’Connor, D., Pauly, J.M., Larson, P.: Fast variable density Poisson-disc sample generation with directional variation for compressed sensing in MRI. Magn. Reson. Imaging 77, 186–193 (2021)

  26. Fang, Z., Van Le, N., Choy, M., Lee, J.H.: High spatial resolution compressed sensing (HSPARSE) functional MRI. Magn. Reson. Med. 76(2), 440–455 (2016)

    Article  Google Scholar 

  27. Folberth, J., Becker, S.: Efficient adjoint computation for wavelet and convolution operators. IEEE Signal Process. Mag. 33(6), 135–147 (2016)

    Article  Google Scholar 

  28. Huang, Y.C., Chang, S.C.: Error resilient techniques for wavelet based compressed sensing. In: 2020 IEEE 2nd Global Conference on Life Sciences and Technologies (LifeTech), pp. 39–41. IEEE (2020)

  29. Kaiser, J.F.: Nonrecursive digital filter design using the I\(_0\)-sinh window function. In: Proceedings of 1974 IEEE International Symposium on Circuits & Systems, San Francisco DA, April, pp. 20–23 (1974)

  30. Kopanoglu, E., Güngör, A., Kilic, T., Saritas, E.U., Oguz, K.K., Çukur, T., Güven, H.E.: Simultaneous use of individual and joint regularization terms in compressive sensing: Joint reconstruction of multi-channel multi-contrast MRI acquisitions. NMR Biomed. 33(4), e4247 (2020)

    Article  Google Scholar 

  31. Kunisch, K., Pock, T.: A bilevel optimization approach for parameter learning in variational models. SIAM J Imaging Sci 6(2), 938–983 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lessig, C., Fiume, E.: SOHO: orthogonal and symmetric Haar wavelets on the sphere. ACM Trans Graph (TOG) 27(1), 4 (2008)

    Article  Google Scholar 

  33. Levine, E., Daniel, B., Vasanawala, S., Hargreaves, B., Saranathan, M.: 3D Cartesian MRI with compressed sensing and variable view sharing using complementary Poisson-disc sampling. Magn. Reson. Med. 77(5), 1774–1785 (2017)

    Article  Google Scholar 

  34. Li, C., Adcock, B.: Compressed sensing with local structure: uniform recovery guarantees for the sparsity in levels class. Appl Comput Harmonic Anal 46(3), 453–477 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, F., Cornwell, T.J., de Hoog, F.: The application of compressive sampling to radio astronomy—I deconvolution. Astron. Astrophys. 528, A31 (2011)

    Article  Google Scholar 

  36. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  37. Maier, A., Syben, C., Lasser, T., Riess, C.: A gentle introduction to deep learning in medical image processing. Zeitschrift für Medizinische Physik 29(2), 86–101 (2019)

    Article  Google Scholar 

  38. Majumdar, A., Ward, R.K.: On the choice of compressed sensing priors and sparsifying transforms for MR image reconstruction: an experimental study. Sig. Process. Image Commun. 27(9), 1035–1048 (2012)

    Article  Google Scholar 

  39. Murphy, M., Alley, M., Demmel, J., Keutzer, K., Vasanawala, S., Lustig, M.: Fast \(\ell _1\)-spirit compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime. IEEE Trans. Med. Imaging 31(6), 1250–1262 (2012)

    Article  Google Scholar 

  40. Oike, Y., El Gamal, A.: CMOS image sensor with per-column \(\sigma \delta \) ADC and programmable compressed sensing. IEEE J. Solid State Circuits 48(1), 318–328 (2012)

    Article  Google Scholar 

  41. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Pearson Education, London (2014)

    MATH  Google Scholar 

  42. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, pp. 40–44. IEEE (1993)

  43. Poon, C.: On the role of total variation in compressed sensing. SIAM J. Imaging Sci. 8(1), 682–720 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sandino, C.M., Cheng, J.Y., Chen, F., Mardani, M., Pauly, J.M., Vasanawala, S.S.: Compressed sensing: from research to clinical practice with deep neural networks: shortening scan times for magnetic resonance imaging. IEEE Signal Process. Mag. 37(1), 117–127 (2020)

    Article  Google Scholar 

  45. Saranathan, M., Rettmann, D.W., Hargreaves, B.A., Clarke, S.E., Vasanawala, S.S.: Differential subsampling with Cartesian ordering (DISCO): a high Spatio-temporal resolution Dixon imaging sequence for multiphasic contrast enhanced abdominal imaging. J. Magn. Reson. Imaging 35(6), 1484–1492 (2012)

    Article  Google Scholar 

  46. Scheinberg, K., Goldfarb, D., Bai, X.: Fast first-order methods for composite convex optimization with backtracking. Found. Comput. Math. 14(3), 389–417 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Senel, L.K., Kilic, T., Gungor, A., Kopanoglu, E., Guven, H.E., Saritas, E.U., Koc, A., Cukur, T.: Statistically segregated k-space sampling for accelerating multiple-acquisition MRI. IEEE Trans. Med. Imaging 38(7), 1701–1714 (2019)

    Article  Google Scholar 

  48. Shahdloo, M., Ilicak, E., Tofighi, M., Saritas, E.U., Çetin, A.E., Çukur, T.: Projection onto epigraph sets for rapid self-tuning compressed sensing MRI. IEEE Trans. Med. Imaging 38(7), 1677–1689 (2018)

    Article  Google Scholar 

  49. Shin, P.J., Larson, P.E., Ohliger, M.A., Elad, M., Pauly, J.M., Vigneron, D.B., Lustig, M.: Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion. Magn. Reson. Med. 72(4), 959–970 (2014)

    Article  Google Scholar 

  50. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Uecker, M., Lai, P., Murphy, M.J., Virtue, P., Elad, M., Pauly, J.M., Vasanawala, S.S., Lustig, M.: ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn. Reson. Med. 71(3), 990–1001 (2014)

    Article  Google Scholar 

  52. Vasanawala, S., Murphy, M., Alley, M.T., Lai, P., Keutzer, K., Pauly, J.M., Lustig, M.: Practical parallel imaging compressed sensing MRI: Summary of two years of experience in accelerating body MRI of pediatric patients. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1039–1043. IEEE (2011)

  53. Voronin, S., Daubechies, I.: An iteratively reweighted least squares algorithm for sparse regularization. arXiv preprint arXiv:1511.08970 (2015)

  54. Wiaux, Y., Jacques, L., Puy, G., Scaife, A.M., Vandergheynst, P.: Compressed sensing imaging techniques for radio interferometry. Mon. Not. R. Astron. Soc. 395(3), 1733–1742 (2009)

    Article  Google Scholar 

  55. Xu, X., Zhang, M., Luo, M., Yang, J., Qu, Q., Tan, Z., Yang, H.: Echo signal extraction based on improved singular spectrum analysis and compressed sensing in wavelet domain. IEEE Access 7, 67402–67412 (2019)

    Article  Google Scholar 

  56. Zhang, J., Ghanem, B.: ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1828–1837 (2018)

  57. Zhang, J., Teng, J., Bai, Y.: Improving sparse compressed sensing medical CT image reconstruction. Autom. Control Comput. Sci. 53(3), 281–289 (2019)

    Article  Google Scholar 

  58. Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487–492 (2018)

    Article  Google Scholar 

  59. Zhu, X.X., Ge, N., Shahzad, M.: Joint sparsity in SAR tomography for urban mapping. IEEE J. Sel. Top. Signal Process. 9(8), 1498–1509 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Dwork.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ND would like to thank the Quantitative Biosciences Institute at UCSF and the American Heart Association as funding sources for this work. ND is supported by a Postdoctoral Fellowship of the American Heart Association. ND and PL have been supported by the National Institute of Health’s Grant No. NIH R01 HL136965.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwork, N., O’Connor, D., Baron, C.A. et al. Utilizing the wavelet transform’s structure in compressed sensing. SIViP 15, 1407–1414 (2021). https://doi.org/10.1007/s11760-021-01872-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-01872-y

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy