Skip to main content
Log in

The contribution of VNIR and SWIR hyperspectral imaging to rock art studies: example of the Otello schematic rock art site (Saint-Rémy-de-Provence, Bouches-du-Rhône, France)

  • Research
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

This paper presents a methodological contribution to rock art archaeology by demonstrating the benefits of hyperspectral imaging, a relatively new method, for the understanding of rock art sites. It illustrates the complementarity of VNIR hyperspectral imaging, applied in rare cases to rock archaeology, and SWIR hyperspectral imaging, implemented here in a unprecedented way to a rock art panel. Applied to a schematic rock art site in southern France, the Otello rock shelter (Saint-Rémy-de-Provence, France), this method allowed the discovery of numerous new figures invisible to the naked eye or unsuspected after image enhancement with the DStretch plug-in of the ImageJ software, the individualisation of figures within complex superpositions, and the discovery of figures covered by weathering products. Moreover, by conferring a spatial dimension to the analysis of pictorial matter, thus allowing a classification of pigments at the scale of the wall, hyperspectral imaging makes it possible to automatically isolate different paintings and to carry out objective groupings of figures on the basis of their composition. Finally, hyperspectral imaging allows us to precisely document, distinguish and characterise weathering products interacting with painted figures. For all of these reasons, this method appears essential to highlight the relative chronology and syntax of iconography, and consequently to understand its cognitive nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Notes

  1. PhD by C. Théron (dir. P. Martinetto/Néel Institute and C. Defrasne/EDYTEM; co-supervision: E. Chalmin/ EDYTEM; 2022—2025) funded by the MITI (CNRS Interdisciplinary Mission).

  2. Analyses of colouring matters are also carried out in the framework the Graphein project (dir. C. Defrasne) funded by the Ministry of Culture.

References

  • Alexopoulou A, Kaminari A, Moutsatsou A (2019) Multispectral and Hyperspectral Studies on Greek Monuments. Achievements and Limitations. Communications in Computer and Information Science, Archaeological Objects and Paintings on Different Substrates. https://doi.org/10.1007/978-3-030-12960-6_31

    Book  Google Scholar 

  • Alfeld M, Baraldi C, Gamberini MC, Walter P (2019) Investigation of the pigment use in the Tomb of the Reliefs and other tombs in the Etruscan Banditaccia Necropolis. X-Ray Spectrom 48:262–273. https://doi.org/10.1002/xrs.2951

    Article  Google Scholar 

  • Alfeld M, Mulliez M, Devogelaere J, et al (2018) MA-XRF and hyperspectral reflectance imaging for visualizing traces of antique polychromy on the Frieze of the Siphnian Treasury. Microchem J 395. https://doi.org/10.1016/j.microc.2018.05.050

  • Bayarri V, Sebastián MA, Ripoll S (2019) Hyperspectral Imaging Techniques for the Study, Conservation and Management of Rock Art. Appl Sci 9:5011. https://doi.org/10.3390/app9235011

    Article  Google Scholar 

  • Bayarri V, Castillo E, Ripoll S, Sebastian MA (2021) Improved Application of Hyperspectral Analysis to Rock Art Panels from El Castillo Cave (Spain). Appl Sci 11:1292

    Article  Google Scholar 

  • BayarriCayón V (2020) Algoritmos de análisis de imágenes multiespectrales e hiperespectrales para la documentación e interpretación del arte rupestre. Universidad Nacional de Educación a Distancia (España), Escuela Internacional de Doctorado. Programa de Doctorado en Tecnologías Industriales, p 2020

    Google Scholar 

  • Bayarri V, Latova J, Castillo E, et al (2015) Nueva documentación y estudio del arte empleando técnicas hiperespectrales en la Cueva de Altamira, Proceedings of the XIX International Rock Art Conference IFRAO 2015 (Cáceres, Spain, 31 August - 4 September 2015), H. Collado Giraldo H. and García Arranz J.J. (eds) Tomar pp 2293–2307

  • Bayarri-Cayón V, Castillo-López E, Antonio J (2022) An automatic approach for documentation and recovery of rupestrian paintings using multispectral remote sensing, WSEAS journal, 2

  • Borengasser M, Hungate WS, Watkins R (2007) Hyperspectral Remote Sensing: Principles and Applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Catelli E, Randeberg L, Strandberg H, et al (2018) Can hyperspectral imaging be used to map corrosion products on outdoor bronze sculptures?. J Spectral Imaging. https://doi.org/10.1255/jsi.2018.a10

  • Chalmin E, Schmitt B, Chanteraud C et al (2021) How to distinguish red coloring matter used in prehistoric time? The contribution of visible near-infrared diffuse reflectance spectroscopy. Color Res Appl 46:656–673

    Article  Google Scholar 

  • Clark RN, Roush L (1984) Reflectance Spectroscopy Quantitative Analysis Techniques for Remote Sensing Applications. J Geophys Res 89:6329–6340

  • Cortea IM, Ratoiu L, Ghervase L et al (2021) Investigation of Ancient Wall Painting Fragments Discovered in the Roman Baths from Alburnus Maior by Complementary Non-Destructive Techniques. Appl Sci 11:10049. https://doi.org/10.3390/app112110049

    Article  Google Scholar 

  • Cucci C, Delaney JK, Picollo M (2016) Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts. Acc Chem Res 49:2070–2079. https://doi.org/10.1021/acs.accounts.6b00048

    Article  Google Scholar 

  • Cucci C, Webb EK, Casini A et al (2019) Short-wave infrared reflectance hyperspectral imaging for painting investigations: A methodological study. J Am Inst Conserv 58:16–36. https://doi.org/10.1080/01971360.2018.1543102

    Article  Google Scholar 

  • Cucci C, Picollo M, Chiarantini L et al (2020) Remote-sensing hyperspectral imaging for applications in archaeological areas: Non-invasive investigations on wall paintings and on mural inscriptions in the Pompeii site. Microchem J 158:105082. https://doi.org/10.1016/j.microc.2020.105082

    Article  Google Scholar 

  • Daniel F, Mounier A (2015) Mobile hyperspectral imaging for the non-invasive study of a mural painting in the Belves Castle (France, 15th C). STAR: Sci Technol Archaeol Res 1:81–88. https://doi.org/10.1080/20548923.2016.1183942

    Article  Google Scholar 

  • Daniel F, Mounier A, Pérez-Arantegui J et al (2017) Comparison between non-invasive methods used on paintingsby Goya and his contemporaries: hyperspectral imagingvs. point-by-point spectroscopic analysis. Anal Bioanal Chem 409:4047–4056

    Article  Google Scholar 

  • Daveri A, Paziani S, Marmion M et al (2018) New perspectives in the non-invasive, in situ identification of painting materials: The advanced MWIR hyperspectral imaging. TrAC, Trends Anal Chem 98:143–148. https://doi.org/10.1016/j.trac.2017.11.004

    Article  Google Scholar 

  • de Viguerie L, Pladevall NO, Lotz H et al (2020) Mapping pigments and binders in 15th century Gothic works of art using a combination of visible and near infrared hyperspectral imaging. Microchem J 155:104674. https://doi.org/10.1016/j.microc.2020.104674

    Article  Google Scholar 

  • Defrasne C (2014) Digital image enhancement for recording rupestrian engravings: applications to an alpine rockshelter, Journal of Archaeological Science. J Archaeol Sci 50:5031–5038

    Article  Google Scholar 

  • Defrasne C, Chalmin E, Bellot-Gurlet L, Thirault E (2019) From archaeological layers to schematic rock art? Integrated study of the Neolithic coloring materials on an alpine rock art site. Archaeol Anthropol Sci 11:6065–6091

    Article  Google Scholar 

  • Defrasne C, Massé M, Giraud M et al (2021) L’abri Otello (Saint-Rémy-de-Provence. SRA PACA, Bouches-du-Rhône)

    Google Scholar 

  • Domingo I, Villaverde V, Lopez-Montalvo E et al (2013) Latest developments in rock art recording: towards an integral documentation of Levantine rock art sites combining 2D and 3D recording techniques. J Archaeol Sci 40:1879–1889. https://doi.org/10.1016/j.jas.2012.11.024

    Article  Google Scholar 

  • Fischer C, Kakoulli I (2006) Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications. Stud Conserv 51:3–16

    Article  Google Scholar 

  • Frati G, Launeau P, Robin M, Giraud M, Juigner M, Debaine F (2021) Michon C (2021) Coastal Sand Dunes Monitoring by Low Vegetation Cover Classification and Digital Elevation Model Improvement Using Synchronized Hyperspectral and Full-Waveform LiDAR Remote Sensing. Remote Sens 13(1):29

    Article  Google Scholar 

  • Gabasova LR, Schmitt B, Grundy W, Bertrand T, Olkin CB, Spencer JR, Young LA, Ennico K, Weaver HA, Stern SA (2021) Global compositional cartography of Pluto from intensity-based registration of LEISA data. Icarus 356:113833

    Article  Google Scholar 

  • Hameau P (2002) Passage, transformation et art schématique : l’exemple des peintures néolithiques du sud de la France. Archaeopress, Oxford

    Book  Google Scholar 

  • Hameau P (2011) Des signes dans l’espace : l’abri Otello à Saint-Rémy-de-Provence. In: Sénépart I, Perrin T, Bonnardin S (eds) Marges, frontières et transgression. Actualité de la recherche. Actes des 8e Rencontres Méridionales de Préhistoire Récente, Marseille, 7 et 8 novembre 2008., Archives d’Ecologie Préhistorique. Toulouse, 345–358

  • Harman J (2005) Using Decorrelation Stretch to ENhance rock art IMages. https://www.dstretch.com/AlgorithmDescription.html. Accessed 24 Nov 2022

  • Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13:411–430. https://doi.org/10.1016/S0893-6080(00)00026-5

    Article  Google Scholar 

  • Jones C, Duffy C, Gibson A, Terras M (2020) Understanding multispectral imaging of cultural heritage: Determining best practice in MSI analysis of historical artefacts. J Cult Herit 45:339–350. https://doi.org/10.1016/j.culher.2020.03.004

    Article  Google Scholar 

  • Khan MJ, Khan HS, Yousaf A et al (2018) Modern Trends in Hyperspectral Image Analysis: A Review. IEEE Access 6:14118–14129. https://doi.org/10.1109/ACCESS.2018.2812999

    Article  Google Scholar 

  • Kim MH, Rushmeier H (2011) Radiometric characterization of spectral imaging for textual pigment identification. In: Proceedings of the 12th International conference on Virtual Reality, Archaeology and Cultural Heritage, M. Dellepiane, F. Niccolucci, S. Pena Serna, H. Rushmeier, and L. Van Gool (Editors) Eurographics Association, Goslar, DEU, 57–64

  • Le Mouélic S, Rodriguez S, Robidel R, Rousseau B, Seignovert B, Sotin C, Barnes JW, Brown RH, Baines KH, Buratti BJ, Clark RN, Nicholson PD, Rannou P, Cornet T (2018) Mapping polar atmospheric features on Titan with VIMS: From the dissipation of the northern cloud to the onset of a southern polar vortex. Icarus 311:371–383

    Article  Google Scholar 

  • Le Quellec JL, Harman J, Defrasne C, Duquesnoy F (2013) DStretch et l’amélioration des images numériques. Cahiers De l’AARS 16:177–198

    Google Scholar 

  • Le Quellec J-L, Defrasne C, Duquesnoy F (2015) Digital image enhancement with DStretch: is complexity always necessary for efficiency ? Digit Appl Archaeol Cult Herit 2(2–3):56–67

    Google Scholar 

  • Li GH, Chen Y, Sun XJ et al (2020) An automatic hyperspectral scanning system for the technical investigations of Chinese scroll paintings. Microchem J 155:104699. https://doi.org/10.1016/j.microc.2020.104699

    Article  Google Scholar 

  • Liang H (2012) Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Appl Phys A 106:309–323. https://doi.org/10.1007/s00339-011-6689-1

    Article  Google Scholar 

  • Martinez Garcia J, Hernandez Perez MS (2013) Arte Rupestre Esquemático en la Península Ibérica, Comarca de los Vélez, Almeria, 5-7 de Mayo 2004 Ayuntamiento de Velez-Blanco, Ministerio de Educacion, Cultura y Deporte 327

  • Massé M, Bourgeois O, Le Mouélic S, Verpoorter C, Spiga A, Le Deit L (2012) Wide distribution and glacial origin of polar gypsum on Mars. Earth Planet Sci Lett 317–318:44–55

    Article  Google Scholar 

  • Le Mouélic S, Chauvet F, Giraud M, et al (2013) Investigation of a painting dating the French revolution using visible and near infrared hyperspectral imagery, 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Gainesville, FL, USA, pp 1–4. https://doi.org/10.1109/WHISPERS.2013.8080713

  • Mulholland R, Howell D, Beeby A et al (2017) Identifying eighteenth century pigments at the Bodleian library using in situ Raman spectroscopy. XRF Hyperspectral Imaging Herit Sci 5:43. https://doi.org/10.1186/s40494-017-0157-y

    Article  Google Scholar 

  • Nicoud E, Palmerini G, Villa V et al (2022) Géoarchéologie en contexte karstique dans la Maiella (Abruzzes. Bulletin archéologique des Écoles françaises à l’étranger, Italie)

    Google Scholar 

  • Peyghambari S, Zhang Y (2021) Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: an updated review. J Appl Rem Sens 15(3):031501

    Article  Google Scholar 

  • Quesada Martínez E (2008) Aplicación Dstretch del software Image-J. Avance de resultados en el Arte Rupestre de la Región de Murcia. Cuadernos de arte rupestre: revista del Centro de Interpretación de Arte Rupestre de Moratalla 5:9–27

  • Ripoll S, Bayarri V, Muñoz FJ et al (2021) Hands Stencils in El Castillo Cave (Puente Viesgo, Cantabria, Spain). An Interdisciplinary Study. Proc Prehist Soc 87:51–71. https://doi.org/10.1017/ppr.2021.11

    Article  Google Scholar 

  • Sandak J, Sandak A, Legan L et al (2021) Nondestructive Evaluation of Heritage Object Coatings with Four Hyperspectral Imaging Systems. Coatings 11:244. https://doi.org/10.3390/coatings11020244

    Article  Google Scholar 

  • Schmitt B, Philippe S, Grundy WM et al (2017) Physical state and distribution of materials at the surface of Pluto from New Horizons LEISA imaging spectrometer. Icarus 287:229–260. https://doi.org/10.1016/j.icarus.2016.12.025

    Article  Google Scholar 

  • Schmitt B, Bollard Ph, Albert D et al (2018) SSHADE: Solid Spectroscopy Hosting Architecture of Databases and Expertise and its databases. OSUG Data Cent Serv/database Infrastruct. https://doi.org/10.26302/SSHADE

  • Schmitt B, Souidi Z, Duquesnoy F, Donzé F-V (2023) From RGB camera to hyperspectral imaging: a breakthrough in Neolithic rock painting analysis. Herit Sci 11(91). https://doi.org/10.1186/s40494-023-00940-5

Download references

Acknowledgements

We would like to thank the municipality of Saint-Rémy-de-Provence and the Service Régional d'Archéologie de Provence Alpes Côte d'Azur for granting us permission to work on the Otello site. We would also like to thank the people who helped us with the fieldwork that led to the results presented here, and in particular the porters who made it possible to transport the material.

Funding

This work was financed by the IDEX Université Grenoble Alpes in the framework of the COPRA project (Matières COlorantes, temps et PRatiques de l'Art pariétal néolithique/Colouring matter, time and practice in Neolithic rock art. dir. C. Defrasne).

Author information

Authors and Affiliations

Authors

Contributions

The acquisition of hyperspectral imagery in the field was carried out by M.M., M.G. and D.F. as part of an archaeological project led by C.D. The processing of hyperspectral data was carried out by M. M. and B. S. C.D., B.S., M.M., S.L.M., M.G., E.C. wrote the main manuscript text. C.D. prepared Figs. 1 to 4, 8, 15 C.D. and M.M. prepared Figs. 5, 6, 7, 9, 10, 11 B.S. prepared Figs. 12, 13, 14 and 16. All authors reviewed the manuscript.

All authors reviewed the manuscript.

Corresponding author

Correspondence to Claudia Defrasne.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors consent to the publication of this article.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Defrasne, C., Massé, M., Giraud, M. et al. The contribution of VNIR and SWIR hyperspectral imaging to rock art studies: example of the Otello schematic rock art site (Saint-Rémy-de-Provence, Bouches-du-Rhône, France). Archaeol Anthropol Sci 15, 116 (2023). https://doi.org/10.1007/s12520-023-01812-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-023-01812-6

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy