Abstract
Domain adaptation in machine learning and image processing aims to benefit from gained knowledge of the multiple labeled training sets (i.e. source domain) to classify the unseen test set (i.e. target domain). Therefore, the major issue emerges from dataset bias where the source and target domains have different distributions. In this paper, we introduce a novel unsupervised domain adaptation method for cross-domain visual classification. We suggest a unified framework that reduces both statistical and geometrical shifts across domains, referred to as unsupervised domain adaptation via transferred local Fisher discriminant analysis (TLFDA). Specifically, TLFDA projects data into a shared subspace to minimize the distribution shift between domains and simultaneously preserves the discrimination across different classes. TLFDA maximizes the between-class separability and preserves the within-class local structure in form of an objective function metric. The objective function is solved effectively in closed form. Broad experiments demonstrate that TLFDA significantly outperforms many state-of-the-art domain adaptation methods on different cross-domain visual classification tasks.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahmadvand, M., Tahmoresnezhad, J.: Metric transfer learning via geometric knowledge embedding. Appl. Intell. 51(2), 921–934 (2021)
Shao, L., Zhu, F., Li, X.: Transfer learning for visual categorization: a survey. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 1019–1034 (2014)
Li, J., Yue, W., Ke, L.: Structured domain adaptation. IEEE Trans. Circ. Syst. Video Technol. 27(8), 1700–1713 (2016)
Tahmoresnezhad, J., Hashemi, S.: Diret: an effective discriminative dimensionality reduction approach for multi-source transfer learning. Sci. Iran. 24(3), 1303–1311 (2017)
Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)
He, X., Yan, S., Yuxiao, H., Niyogi, P., Zhang, H.-J.: Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)
Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7(3), 200–217 (1967)
Wand, M.P., Jones, M.C.: Kernel Smoothing. CRC Press, London (1994)
Sugiyama, M.: Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. J. Mach. Learn. Res. 8(5), 1 (2007)
Tian, L., Tang, Y., Hu, L., Ren, Z., Zhang, W.: Domain adaptation by class centroid matching and local manifold self-learning. IEEE Trans. Image Process. 29, 9703–9718 (2020)
Noori Saray, S., Tahmoresnezhad, J.: Joint distinct subspace learning and unsupervised transfer classification for visual domain adaptation. Signal Image Video Process. 15(2), 279–287 (2021)
Sun, Q., Chattopadhyay, R., Panchanathan, S., Ye, J.: A two-stage weighting framework for multi-source domain adaptation. Adv. Neural Inf. Process. Syst. 24, 1 (2011)
Ishii, M., Sato, A.: Joint optimization of feature transform and instance weighting for domain adaptation. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 3793–3799. IEEE, New York(2017)
Gong, B., Grauman, K., Sha, F.: Connecting the dots with landmarks: discriminatively learning domain-invariant features for unsupervised domain adaptation. In: International Conference on Machine Learning, pp. 222–230. PMLR (2013)
Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.: A kernel method for the two-sample-problem. Adv. Neural Inf. Process. Syst. 19, 1 (2006)
Aljundi, R., Emonet, R., Muselet, D., Sebban, M.: Landmarks-based kernelized subspace alignment for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 56–63 (2015)
Aytar, Y., Zisserman, A.: Tabula rasa: model transfer for object category detection. In: 2011 International Conference on Computer Vision, pp. 2252–2259. IEEE (2011)
Jiang, W., Zavesky, E., Chang, S.-F., Loui, A.: Cross-domain learning methods for high-level visual concept classification. In: 2008 15th IEEE International Conference on Image Processing, pp. 161–164. IEEE (2008)
Duan, L., Tsang, I.W., Xu, D., Chua, T.-S.: Domain adaptation from multiple sources via auxiliary classifiers. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 289–296 (2009)
Long, M., Wang, J., Ding, G., Pan, S.J., Philip, S.Y.: Adaptation regularization: a general framework for transfer learning. IEEE Trans. Knowl. Data Eng. 26(5), 1076–1089 (2013)
Long, M., Wang, J., Ding, G., Sun, J., Philip, S.Y.: Transfer feature learning with joint distribution adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2200–2207 (2013)
Yong, X., Fang, X., Jian, W., Li, X., Zhang, D.: Discriminative transfer subspace learning via low-rank and sparse representation. IEEE Trans. Image Process. 25(2), 850–863 (2015)
Tahmoresnezhad, J., Hashemi, S.: Visual domain adaptation via transfer feature learning. Knowl. Inf. Syst. 50(2), 585–605 (2017)
Liu, J., Li, J., Ke, L.: Coupled local-global adaptation for multi-source transfer learning. Neurocomputing 275, 247–254 (2018)
Li, S., Song, S., Huang, G., Ding, Z., Cheng, W.: Domain invariant and class discriminative feature learning for visual domain adaptation. IEEE Trans. Image Process. 27(9), 4260–4273 (2018)
Luo, L., Chen, L., Shiqiang, H., Ying, L., Wang, X.: Discriminative and geometry-aware unsupervised domain adaptation. IEEE Trans. Cybern. 50(9), 3914–3927 (2020)
Rezaei, S., Tahmoresnezhad, J., Solouk, V.: A transductive transfer learning approach for image classification. Int. J. Mach. Learn. Cybern. 12(3), 747–762 (2021)
Sun, J., Wang, Z., Wang, W., Li, H., Sun, F.: Domain adaptation with geometrical preservation and distribution alignment. Neurocomputing 454, 152–167 (2021)
Liu, W., Li, J., Liu, B., Guan, W., Zhou, Y., Changsheng, X.: Unified cross-domain classification via geometric and statistical adaptations. Pattern Recogn. 110, 107658 (2021)
Sanodiya, R.K., Paul, D., Yao, L., Mathew, J., Juhi, A.: A feature selection approach to visual domain adaptation in classification. In: International Conference on Neural Information Processing, pp 77–89. Springer, London (2020)
Luo, L., Wang, X., Hu, S., Wang, C., Tang, Y., Chen, L.: Close yet distinctive domain adaptation. Preprint arXiv:1704.04235 (2017)
Lee, D., Seung, H.S.: Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process. Syst. 13, 1 (2000)
Kennedy, J.: Particle swarm optimization. In: Encyclopedia of Machine Learning, pp. 760–766. Springer, Berlin (2011)
Wang, J., Feng, W., Chen, Y., Yu, H., Huang, M., Philip, S.Y.: Visual domain adaptation with manifold embedded distribution alignment. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 402–410 (2018)
Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5018–5027 (2017)
Minnehan, B., Savakis, A.: Deep domain adaptation with manifold aligned label transfer. Mach. Vis. Appl. 30(3), 473–485 (2019)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Li, Y., Wang, N., Shi, J., Liu, J., Hou, X.: Revisiting batch normalization for practical domain adaptation. Preprint arXiv:1603.04779 (2016)
De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L.: The mahalanobis distance. Chemomet. Intell. Lab. Syst. 50(1), 1–18 (2000)
Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)
Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: European Conference on Computer Vision, pp. 213–226. Springer, London (2010)
Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)
Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: a deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning, pp. 647–655. PMLR (2014)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994)
Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE) database. In: Proceedings of fifth IEEE International Conference on Automatic Face Gesture Recognition, pp. 53–58. IEEE, New York (2002)
Gheisari, M., Baghshah, M.S.: Joint predictive model and representation learning for visual domain adaptation. Eng. Appl. Artif. Intell. 58, 157–170 (2017)
Ding, Z., Yun, F.: Robust transfer metric learning for image classification. IEEE Trans. Image Process. 26(2), 660–670 (2016)
Zhang, J., Li, W., Ogunbona, P.: Joint geometrical and statistical alignment for visual domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1859–1867 (2017)
Zang, S., Cheng, Y., Wang, X., Qiang, Yu., Xie, G.-S.: Cross domain mean approximation for unsupervised domain adaptation. IEEE Access 8, 139052–139069 (2020)
Luo, L., Chen, L., Hu, S.: Discriminative noise robust sparse orthogonal label regression-based domain adaptation. Preprint arXiv:2101.04563 (2021)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1 (2012)
Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. Preprint arXiv:1412.3474 (2014)
Uzair, M., Mian, A.: Blind domain adaptation with augmented extreme learning machine features. IEEE Trans. Cybern. 47(3), 651–660 (2016)
Gholami, B., Pavlovic, V., et al.: Punda: probabilistic unsupervised domain adaptation for knowledge transfer across visual categories. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3581–3590 (2017)
Lu, H., Zhang, L., Cao, Z., Wei, W., Xian, K., Shen, C., van den Hengel, A.: When unsupervised domain adaptation meets tensor representations. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 599–608 (2017)
Ghifary, M., Balduzzi, D., Kleijn, W.B., Zhang, M.: Scatter component analysis: a unified framework for domain adaptation and domain generalization. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1414–1430 (2016)
Li, J., Lu, K., Huang, Z., Zhu, L., Shen, H.T.: Transfer independently together: a generalized framework for domain adaptation. IEEE Trans. Cybern. 49(6), 2144–2155 (2018)
Funding
No funding was received for the submitted work.
Author information
Authors and Affiliations
Contributions
The methodology, writing and theoretical analysis: MZ. Supervision: JT. Writing and analysis: SR.
Corresponding author
Ethics declarations
Conflict of interest
All authors declare that they have no conflict of interest.
Ethics approval
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zandifar, M., Rezaei, S. & Tahmoresnezhad, J. Unsupervised domain adaptation via transferred local Fisher discriminant analysis. Iran J Comput Sci 6, 345–364 (2023). https://doi.org/10.1007/s42044-023-00144-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42044-023-00144-x