Skip to main content
Log in

Comparison of the Absorption Spectra of Nd3+ Ions in the NdFe3(BO3)4, Nd0.5Gd0.5Fe3(BO3)4, and Ho0.75Nd0.25Fe3(BO3)4 Crystals

  • OPTICAL PROPERTIES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 2021

This article has been updated

Abstract

The polarized optical absorption spectra in the region of a series of the ff  transitions of Nd3+ ions in the Ho0.75Nd0.25Fe3(BO3)4, Nd0.5Gd0.5Fe3(BO3)4, and NdFe3(BO3)4 crystals at 90 K have been compared. The spectral features related to the difference in the local environment of Nd3+ ions in these crystals have been established. In the region of the transition 4I9/24G5/2 + 2G7/2 of Nd3+ ions in the Ho0.75Nd0.25Fe3(BO3)4 crystal, the appearance of some absorption lines at the structural transition R32 → P3121 around ~200 K due to the local symmetry variation has been found. The intensity of these lines smoothly increases with a decrease in temperature from the transition point. The temperature dependence of the lattice parameters of the Ho0.75Nd0.25Fe3(BO3)4 crystal has been measured. It has been found that, at the transition temperature, the lattice parameter a changes stepwise, which is indicative of the occurrence of a first-order phase transition. The lattice parameter c changes smoothly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Change history

REFERENCES

  1. A. K. Zvezdin, S. S. Krotov, A. M. Kadomtseva, G. P. Vorob’ev, Yu. F. Popov, A. P. Pyatakov, L. N. Bezmaternykh, and E. A. Popova, JETP Lett. 81, 272 (2005).

    Article  ADS  Google Scholar 

  2. A. M. Kadomtseva, Yu. F. Popov, G. P. Vorob’ev, A. P. Pyatakov, S. S. Krotov, K. I. Kamilov, V. Yu. Ivanov, A. A. Mukhin, A. K. Zvezdin, A. M. Kuz’menko, L. N. Bezmaternykh, I. A. Gudim, and V. L. Temerov, Low Temp. Phys. 36, 511 (2010).

    Article  ADS  Google Scholar 

  3. A. K. Zvezdin, G. P. Vorob’ev, A. M. Kadomtseva, Yu. F. Popov, A. P. Pyatakov, L. N. Bezmaternykh, A. V. Kuvardin, and E. A. Popova, JETP Lett. 83, 509 (2006).

    Article  ADS  Google Scholar 

  4. A. M. Kadomtseva, Yu. F. Popov, G. P. Vorob’ev, A. A. Mukhin, V. Yu. Ivanov, A. M. Kuz’menko, A. S. Prokhorov, L. N. Bezmaternykh, V. L. Temerov, and I. A. Gudim, in Proceedings of the 21st International Conference on New in Magnetism and Magnetic Materials (Moscow, 2009), p. 316.

  5. G. P. Vorob’ev, Yu. F. Popov, A. M. Kadomtseva, E. V. Kuvardin, A. A. Mukhin, V. Yu. Ivanov, L. N. Bezmaternykh, I. A. Gudim, and V. L. Temerov, in Proceedings of the 3rd International Symposium on Media with Structured and Magnetic Ordering Multiferroics-3, Rostov-na-Donu, Loo, 2011, p. 80.

  6. D. Jaque, J. Alloys Compd. 323–324, 204 (2001).

    Article  Google Scholar 

  7. A. Brenier, C. Tu, Z. Zhu, and B. Wu, Appl. Phys. Lett. 84, 2034 (2004).

    Article  ADS  Google Scholar 

  8. X. Chen, Z. Luo, D. Jaque, J. J. Romero, J. Garcia Sole, Y. Huang, A. Jiang, and C. Tu, J. Phys.: Condens. Matter 13, 1171 (2001).

    ADS  Google Scholar 

  9. Y. Saeed, N. Singh, and U. Schwingenschlo, J. Appl. Phys. 110, 103512 (2011).

    Article  ADS  Google Scholar 

  10. S. A. Klimin, D. Fausti, A. Meetsma, L. N. Bezmaternikh, P. H. M. van Loosdrecht, and T. T. M. Palstra, Acta Crystallogr. B 61, 481 (2005).

    Article  Google Scholar 

  11. Y. Hinatsu, Y. Doi, K. Ito, M. Wakeshima, and A. Alemi, J. Solid State Chem. 172, 438 (2003).

    Article  ADS  Google Scholar 

  12. H. Zhang, S. Liu, C. S. Nelson, L. N. Bezmaternykh, Y.-S. Chen, S. G. Wang, R. P. S. M. Lobo, K. Page, M. Matsuda, D. M. Pajerowski, T. J. Williams, and T. A. Tyson, J. Phys.: Condens. Matter 31, 505704 (2019).

    Google Scholar 

  13. J. C. Joubert, W. B. White, and R. Roy, J. Appl. Crystallogr. 1, 318 (1968).

    Article  Google Scholar 

  14. J. A. Campá, C. Cascales, E. Gutiérrez-Puebla, M. A. Monge, I. Rasines, and C. Ruíz-Valero, Chem. Mater. 9, 237 (1997).

    Article  Google Scholar 

  15. A. S. Krylov, S. N. Sofronova, I. A. Gudim, S. N. Krylova, R. Kumar, and A. N. Vtyurin, J. Adv. Dielectr. 8, 1850011 (2018).

    Article  ADS  Google Scholar 

  16. M. N. Popova, E. P. Chukalina, T. N. Stanislavchuk, B. Z. Malkin, A. R. Zakirov, E. Antic-Fidancev, E. A. Popova, L. N. Bezmaternykh, and V. L. Temerov, Phys. Rev. B 75, 224435 (2007).

    Article  ADS  Google Scholar 

  17. A. V. Malakhovskii, S. L. Gnatchenko, I. S. Kachur, V. G. Piryatinskaya, A. L. Sukhachev, and V. L. Temerov, J. Magn. Magn. Mater. 401, 517 (2016).

    Article  ADS  Google Scholar 

  18. A. V. Malakhovskii, A. L. Sukhachev, A. A. Leont’ev, I. A. Gudim, A. S. Krylov, and A. S. Aleksandrovsky, J. Alloys Compd. 529, 38 (2012).

    Article  Google Scholar 

  19. A. L. Sukhachev, A. V. Malakhovskii, A. S. Aleksandrovsky, I. A. Gudim, and V. L. Temerov, Opt. Mater. 83, 87 (2018).

    Article  ADS  Google Scholar 

  20. A. D. Balaev, L. N. Bezmaternykh, I. A. Gudim, V. L. Temerov, S. G. Ovchinnikov, and S. A. Kharlamova, J. Magn. Magn. Mater. 258–259, 532 (2003).

    Article  ADS  Google Scholar 

  21. I. A. Gudim, E. V. Eremin, and V. L. Temerov, J. Cryst. Growth 312, 2427 (2010).

    Article  ADS  Google Scholar 

Download references

Funding

The reported study was funded by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science, to the research project No. 19-42-240003 “Influence of the local en-vironment on magneto-optical properties of ff transitions in rare-earth aluminum and iron borates” and the Russian Foundation for Basic Research, project No. 19-02-00034.

This research used resources at the X21 beamline of the National Synchrotron Light Source, a U. S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Sukhachev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

The original online version of this article was revised: Modifications have been made to the Funding

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhachev, A.L., Malakhovskii, A.V., Nelson, C.S. et al. Comparison of the Absorption Spectra of Nd3+ Ions in the NdFe3(BO3)4, Nd0.5Gd0.5Fe3(BO3)4, and Ho0.75Nd0.25Fe3(BO3)4 Crystals. Phys. Solid State 63, 113–121 (2021). https://doi.org/10.1134/S1063783421010200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421010200

Keywords:

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy