Skip to main content
Log in

Diffusion behaviors of sodium atoms within Si–O network in sodium silicate glasses: insights from molecular dynamics simulations

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We conducted molecular dynamics simulations to investigate the diffusion behavior of sodium atoms in sodium silicate glasses, focusing on the analysis of O-polyhedrons containing sodium atoms. The various characteristic parameters for the diffusion process were calculated, including the mean square displacement (MSD) of atoms, the change rate of neighboring oxygen atoms around sodium, the variation in the number of polyhedrons visited by Na, and the forward–backward jump of sodium between O-polyhedrons. Our findings reveal that the Si–O network unchanged while sodium preferentially moves through O-polyhedrons. Diffusion coefficient of sodium atoms exhibits a quadratic dependence on the change rate of the number O coordination. This diffusion law has been observed across different samples with varying temperatures and SiO2 contents. Additionally, we have evaluated the influence of SiO2 content and temperature on the forward–backward jumps of sodium atoms between O-polyhedrons as an important part of this study.

Graphical abstract

The radial distribution function of the model is compared with experiment data

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a simulation study with no experimental data. All necessary data are available on reasonable request.]

References

  1. A.O. Davidenko, V.E. Sokol’skii, A.S. Roik, I.A. Goncharov, Structural study of sodium silicate glasses and melts. Inorg. Mater. 50, 1289–1296 (2014). https://doi.org/10.1134/S0020168514120048

    Article  Google Scholar 

  2. H. Jabraoui, E.M. Achhal, A. Hasnaoui, J.L. Garden, Y. Vaills, S. Ouaskit, Molecular dynamics simulation of thermodynamic and structural properties of silicate glass: effect of the alkali oxide modifiers. J. Non-Cryst. SolidsCryst. Solids 448, 16–26 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.06.030

    Article  ADS  Google Scholar 

  3. H. Jabraoui, Y. Vaills, A. Hasnaoui, M. Badawi, S. Ouaskit, Effect of sodium oxide modifier on structural and elastic properties of silicate glass. J. Phys. Chem. B 120, 13193–13205 (2016). https://doi.org/10.1021/acs.jpcb.6b09664

    Article  Google Scholar 

  4. Y. Oishi, R. Terai, H. Ueda, A.R. Cooper, A.H. Heuer, Mass transport phenomena in ceramics. J. Mater. Sci. Res. 9, 297–310 (1975). https://link.springer.com/book/10.1007/978-1-4684-3150-6

  5. C. Angell, A., P. Cheeseman, A., S. Tamaddon, Computer simulation studies of migration mechanisms in ionic glasses and liquids. J. Phys. Colloques 43, C9-381–C9-385 (1982). https://doi.org/10.1051/jphyscol:1982972

  6. G.N. Greaves, EXAFS and the structure of glass. J. Non-Cryst. SolidsCryst. Solids 71, 203–217 (1985). https://doi.org/10.1016/0022-3093(85)90289-3

    Article  ADS  Google Scholar 

  7. F. Kargl, A. Meyer, M.M. Koza, H. Schober, Formation of channels for fast-ion diffusion in alkali silicate melts: a quasielastic neutron scattering study. Phys. Rev. B 74, 014304 (2006). https://link.aps.org/doi/10.1103/PhysRevB.74.014304

  8. V. Th, J. Horbach, Slow dynamics in ion-conducting sodium silicate melts: simulation and mode-coupling theory. Europhys. Lett. Lett. 74, 459 (2006). https://doi.org/10.1209/epl/i2006-10012-2

    Article  Google Scholar 

  9. Y. Yu, B. Wang, M. Wang, G. Sant, M. Bauchy, Reactive molecular dynamics simulations of sodium silicate glasses—toward an improved understanding of the structure. Int. J. Appl. Glass Sci 8, 276–284 (2017). https://doi.org/10.1111/ijag.12248

    Article  ADS  Google Scholar 

  10. J.R. Johnson, R.H. Bristow, H.H. Blau, Diffusion of ions in some simple glasses. J. Am. Ceram. Soc. 34, 165–172 (1951). https://doi.org/10.1111/j.1151-2916.1951.tb11630.x

    Article  Google Scholar 

  11. G.N. Greaves, Structure and ionic transport in disordered silicates. Mineral. Mag. 64, 441–446 (2000). https://www.cambridge.org/core/article/structure-and-ionic-transport-in-disordered-silicates/83FC616A36618C9DCE5F1BDF454B3940

  12. J. Habasaki, K.L. Ngai, The mixed alkali effect in ionically conducting glasses revisited: a study by molecular dynamics simulation. Phys. Chem. Chem. Phys. 9, 4673–4689 (2007). https://doi.org/10.1039/B704014H

    Article  Google Scholar 

  13. C.T. Moynihan, N.S. Saad, D.C. Tran, A.V. Lesikar, Mixed-Alkali effect in the dilute foreign-alkali region. Fail. Strong Electrol. Cation. Interact. Model 63, 458–464 (1980). https://doi.org/10.1111/j.1151-2916.1980.tb10212.x

    Article  Google Scholar 

  14. J. Horbach, W. Kob, K. Binder, Structural and dynamical properties of sodium silicate melts: an investigation by molecular dynamics computer simulation. Chem. Geol. 174, 87–101 (2001). https://doi.org/10.1016/S0009-2541(00)00309-0

    Article  ADS  Google Scholar 

  15. W. Smith, G.N. Greaves, M.J. Gillan, Computer simulation of sodium disilicate glass 103, 3091–3097 (1995). https://aip.scitation.org/doi/abs/10.1063/1.470498

  16. A.N. Cormack, J. Du, T.R. Zeitler, Alkali ion migration mechanisms in silicate glasses probed by molecular dynamics simulations. Phys. Chem. Chem. Phys. 4, 3193–3197 (2002). https://doi.org/10.1039/B201721K

    Article  Google Scholar 

  17. A.N. Cormack, J. Du, T.R. Zeitler, Sodium ion migration mechanisms in silicate glasses probed by molecular dynamics simulations. J. Non-Cryst. SolidsCryst. Solids 323, 147–154 (2003). https://doi.org/10.1016/S0022-3093(03)00280-1

    Article  ADS  Google Scholar 

  18. F. Noritake, Diffusion mechanism of network-forming elements in silicate liquids. J. Non-Cryst. SolidsCryst. Solids 553, 120512 (2021). https://doi.org/10.1016/j.jnoncrysol.2020.120512

    Article  Google Scholar 

  19. J. Habasaki, Y. Hiwatari, molecular dynamics study of the mechanism of ion transport in lithium silicate glasses: characteristics of the potential energy surface and structures. Phys. Rev. B 69, 144207 (2004). https://link.aps.org/doi/10.1103/PhysRevB.69.144207

  20. J. Horbach, W. Kob, K. Binder, Dynamics of sodium in sodium disilicate: channel relaxation and sodium diffusion. Phys. Rev. Lett. 88, 125502 (2002). https://link.aps.org/doi/10.1103/PhysRevLett.88.125502

  21. A. Meyer, J. Horbach, W. Kob, F. Kargl, H. Schober, Channel formation and intermediate range order in sodium silicate melts and glasses,. Phys. Rev. Lett. 93, 027801 (2004). https://link.aps.org/doi/10.1103/PhysRevLett.93.027801

  22. H.W. Nesbitt, G.S. Henderson, G.M. Bancroft, R. Ho, Experimental evidence for Na coordination to bridging oxygen in Na-silicate glasses: implications for spectroscopic studies and for the modified random network model. J. Non-Cryst. SolidsCryst. Solids 409, 139–148 (2015). https://doi.org/10.1016/j.jnoncrysol.2014.11.024

    Article  ADS  Google Scholar 

  23. S.J. Gurman, Bond ordering in silicate glasses: a critique and a re-solution. J. Non-Cryst. SolidsCryst. Solids 125, 151–160 (1990). https://doi.org/10.1016/0022-3093(90)90334-I

    Article  ADS  Google Scholar 

  24. H. Maekawa, T. Maekawa, K. Kawamura, T. Yokokawa, The structural groups of alkali silicate glasses determined from 29Si MAS-NMR. J. Non-Cryst. SolidsCryst. Solids 127, 53–64 (1991). https://doi.org/10.1016/0022-3093(91)90400-Z

    Article  ADS  Google Scholar 

  25. M. Bauchy, M. Micoulaut, Atomic scale foundation of temperature-dependent bonding constraints in network glasses and liquids. J. Non-Cryst. SolidsCryst. Solids 357, 2530–2537 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.03.017

    Article  ADS  Google Scholar 

  26. M. Bauchy, Structural, vibrational, and thermal properties of densified silicates: insights from molecular dynamics. 137, 044510 (2012). https://aip.scitation.org/doi/abs/10.1063/1.4738501

  27. Q. Zhou, T. Du, L. Guo, M.M. Smedskjaer, M. Bauchy, New insights into the structure of sodium silicate glasses by force-enhanced atomic refinement. J. Non-Cryst. SolidsCryst. Solids 536, 120006 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120006

    Article  Google Scholar 

  28. F. Noritake, Structural transformations in sodium silicate liquids under pressure: new static and dynamic structure analyses. J. Non-Cryst. SolidsCryst. Solids 473, 102–107 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.08.004

    Article  ADS  Google Scholar 

  29. M. Fábián, P. Jóvári, E. Sváb, G. Mészáros, T. Proffen, E. Veress, Network structure of 0.7SiO2–0.3Na2O glass from neutron and X-ray diffraction and RMC modelling. J. Phys. Conden. Matter 19, 335209 (2007). https://doi.org/10.1088/0953-8984/19/33/335209

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NTT and NVY analyzed data, provided the main idea of this paper. NTT and NVY, PTL wrote manuscript and edited the manuscript.

Corresponding author

Correspondence to N. V. Yen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thao, N.T., Yen, N.V. & Lien, P.T. Diffusion behaviors of sodium atoms within Si–O network in sodium silicate glasses: insights from molecular dynamics simulations. Eur. Phys. J. B 96, 138 (2023). https://doi.org/10.1140/epjb/s10051-023-00610-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00610-2

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy