Skip to main content

Advertisement

A symptom cluster-based triaging system for patients presenting to the emergency department with possible acute coronary syndromes

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

It is challenging to identify potential patients with acute coronary syndrome (ACS) in the emergency department (ED), although these cases should immediately undergo further evaluation in the observation unit. This study aimed to establish a new and rapid assessment system for triaging patients with potential ACS in the ED. Data from 1022 cases (June 2012–August 2015) were evaluated using latent class analysis to identify key symptoms and medical histories. Significant variables in the latent class analysis were entered as predictors for the new triaging system, and the final model was selected based on the false alarm rate, hit rate, and discriminability index. The new system provided better discriminability and significantly reduced the false alarm rate, compared to conventional methods. Our results indicate that symptom clustering analysis can facilitate the identification of potential ACS cases using a risk stratification system in the ED. The symptom clustering may facilitate a rapid assessment tool that reduces the costs of unnecessary diagnosis and hospitalization. Furthermore, this system might be developed as an application for embedding in ambient assisted living homes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Acute Coronary Syndromes Algorithm (2018) Using the acute coronary syndromes algorithm for managing the patient. https://www.acls.net/acute-coronary-syndromes-algorithm.htm. Accessed 11 April 2018

  • Ahmadi E, Weckman GR, Masel DT (2017) Decision making model to predict presence of coronary artery disease using neural network and C5.0 decision tree. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-017-0499-z

    Article  Google Scholar 

  • Amiribesheli M, Benmansour A, Bouchachia A (2015) A review of smart homes in healthcare. J Ambient Intell Humaniz Comput 6(4):495–517

    Google Scholar 

  • Amsterdam EA, Kirk JD, Bluemke DA et al (2010) Testing of low-risk patients presenting to the emergency department with chest pain a scientific statement from the American Heart Association. Circulation 122(17):1756–1776

    PubMed  PubMed Central  Google Scholar 

  • Brieger D, Eagle KA, Goodman SG et al (2004) Acute coronary syndromes without chest pain, an underdiagnosed and undertreated high-risk group: insights from the Global Registry of Acute Coronary Events. Chest 126:46146–46149

    Google Scholar 

  • Cannon CP, Gibson CM, Lambrew CT et al (2000) Relationship of symptom-onset-to-balloon time and door-to-balloon time with mortality in patients undergoing angioplasty for acute myocardial infarction. JAMA 283:2941–2947

    CAS  PubMed  Google Scholar 

  • Canto JG, Goldberg RJ, Hand MM, Bonow RO, Sopko G, Pepine CJ, Long T (2007) Symptom presentation of women with acute coronary syndromes: myth vs. reality. Arch Intern Med 167(22):2405–2413

    PubMed  Google Scholar 

  • Chang AM, Mumma B, Sease KL et al (2007) Gender bias in cardiovascular testing persists after adjustment for presenting characteristics and cardiac risk. Soc Acad Emerg Med 14(7):599–605

    Google Scholar 

  • Chen KC, Hsu JC, Cheng IN et al (2012) Using presenting symptoms to revise the “heart-broken index” for the triage of acute myocardial infarction. APSC Subspecialty Congress Intervention and Imaging 2012. Taipei International Convention Center, Taipei, pp 1–78

    Google Scholar 

  • DeVon HA, Ryan CJ, Ochs AL, Shapiro M (2008) Symptoms across the continuum of acute coronary syndromes: differences between women and men. Am J Crit Care 17(1):14–24

    PubMed  PubMed Central  Google Scholar 

  • DeVon HA, Ryan CJ, Rankin SH, Cooper BA (2010) Classifying subgroups of patients with symptoms of acute coronary syndromes: a cluster analysis. Res Nurs Health 33(5):386–397

    PubMed  PubMed Central  Google Scholar 

  • Diercks DB, Kirk JD, Lindsell CJ et al (2006) Door-to-ECG time in patients with chest pain presenting to the ED. Am J Emerg Med 24:1–7

    PubMed  Google Scholar 

  • Divo M, Casanova C, Marin JM, Celli B, de Torres JP, Polverino F et al (2016) Identification of clinical phenotypes in patients with and without COPD using cluster analysis. Eur Respir J 48(suppl 60):4613

    Google Scholar 

  • Fournier JA, Sanchez A, Quero J, Fernandez-Cortacero JAP, González-Barrero A (1996) Myocardial infarction in men aged 40 years or less: a prospective clinical-angiographic study. Clin Cardiol 19:631–636

    CAS  PubMed  Google Scholar 

  • Goodacre S, Cross E, Arnold J, Angelini K, Capewell S, Nicholl J (2005) The health care burden of acute chest pain. Heart 91(2):229–230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  • Halon DA, Adawi S, Dobrecky-Mery I, Lewis BS (2004) Importance of increasing age on the presentation and outcome of acute coronary syndromes in elderly patients. J Am Coll Cardiol 43(3):346–532

    PubMed  Google Scholar 

  • Hess EP, Brison RJ, Perry JJ et al (2012a) Development of a clinical prediction rule for 30-day cardiac events in emergency department patients with chest pain and possible acute coronary syndrome. Ann Emerg Med 59:115–125

    PubMed  Google Scholar 

  • Hess EP, Knoedler MA, Shah ND, Kline JA, Breslin M, Branda ME et al (2012b) The chest pain choice decision aid. Circ Cardiovasc Qual Outcomes 5(3):251–259

    PubMed  Google Scholar 

  • Hsu J-C, Chen K-C, Cheng I-N, Li A-H (2011) Using heart broken index to improve the diagnostic accuracy of patient with STEMI and shorten door-to-balloon time on emergency department. American Heart Association 2011 Scientific Sessions, Orlando

    Google Scholar 

  • Hussein AF, Hashim SJ, Aziz AFA, Rokhani FZ, Adnan WAW (2017) A real time ECG data compression scheme for enhanced bluetooth low energy ECG system power consumption. J Ambient Intell Humaniz Comput 1–14

  • Jayes RL, Beshansky JR, D’Agostino RB, Selker HP (1992) Do patients’ coronary risk factor reports predict acute cardiac ischemia in the emergency department? A multicenter study. J Clin Epidemiol 45:621–626

    PubMed  Google Scholar 

  • Khan NA, Daskalopoulou SS, Karp I, Eisenberg MJ, Pelletier R, Tsadok MA et al (2013) Sex differences in acute coronary syndrome symptom presentation in young patients. JAMA Intern Med 173(20):1863–1871

    PubMed  Google Scholar 

  • Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G et al (2012) Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488(7412):471

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Kuhn JE, Dunn WR, Sanders R, An Q, Baumgarten KM, Bishop JY et al (2013) Effectiveness of physical therapy in treating atraumatic full-thickness rotator cuff tears: a multicenter prospective cohort study. J Shoulder Elbow Surg 22(10):1371–1379

    PubMed  PubMed Central  Google Scholar 

  • Lee YF, Hu SC, Lai HL (2013) A comparison of the quality of emergency care for acute coronary syndromes before and after accreditation of emergency medical competency. Tzu Chi Nurs J 12(3):66

    Google Scholar 

  • Li K-F (2013) Smart home technology for telemedicine and emergency management. J Ambient Intell Humaniz Comput 4:535–546

    PubMed  Google Scholar 

  • López B, Sánchez M, Bragulat E, Jiménez S, Coll-Vinent B, Ortega M et al (2010) Validation of a triage flowchart to rule out acute coronary syndrome. Emerg Med J 28:841–846

    PubMed  Google Scholar 

  • Lunt A, McGhee E, Rees D, Height S, Rafferty G, Thein SL, Greenough A (2016) Cluster analysis and lung function in sickle cell disease. Eur Respir J 48(suppl 60):2234

    Google Scholar 

  • Maas AHEM, Appelman YEA (2010) Gender differences in coronary heart disease. Neth Heart J 18(12):598–603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahr A, Katsahian S, Varet H, Guillevin L, Hagen EC, Höglund P et al (2013) Revisiting the classification of clinical phenotypes of anti-neutrophil cytoplasmic antibody-associated vasculitis: a cluster analysis. Ann Rheum Dis 72(6):1003–1010

    PubMed  Google Scholar 

  • McNamara RL, Wang Y, Herrin J, Curtis JP, Bradley EH, Magid DJ et al (2006) Effect of door-to-balloon time on mortality in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol 47:2180–2186

    PubMed  Google Scholar 

  • O’Grady MJ, Muldoon C, Dragone M, Tynan R, O’Hare GM (2010) Towards evolutionary ambient assisted living systems. J Ambient Intell Humaniz Comput 1:15–29

    Google Scholar 

  • Rosenfeld AG, Knight EP, Steffen A, Burke L, Daya M, Devon HA (2015) Symptom clusters in patients presenting to the emergency department with possible acute coronary syndrome differ by sex, age, and discharge diagnosis. Heart Lung J Acute Crit Care 44:368–375

    Google Scholar 

  • Rosengren A, Wallentin L, Gitt AK, Behar S, Battler A, Hasdai D (2004) Sex, age, and clinical presentation of acute coronary syndromes. Eur Heart J 25(8):663–670

    PubMed  Google Scholar 

  • Ryan CJ, DeVon HA, Horne R et al (2007) Symptom clusters in acute myocardial infarction: a secondary data analysis. Nurs Res 56(2):72–81

    PubMed  Google Scholar 

  • Schoenenberger AW, Radovanovic D, Stauffer JC, Windecker S, Urban P, Niedermaier G, Plus Investigators AMIS et al (2011) Acute coronary syndromes in young patients: presentation, treatment and outcome. Int J Cardiol 148:300–304

    PubMed  Google Scholar 

  • Simon EL, Griffin P, Medepalli K et al (2014) Door-to-balloon times from freestanding emergency departments meet ST-segment elevation myocardial infarction reperfusion guidelines. J Emerg Med 46:734–740

    PubMed  Google Scholar 

  • Tungsubutra W, Tresukosol D, Buddhari W, Boonsom W, Sanguanwang S, Srichaiveth B (2007) Acute coronary syndrome in young adults: the Thai ACS Registry. J Med Assoc Thai 90(Suppl 1):81–90

    PubMed  Google Scholar 

  • Wang M-H, Lee C-S, Hsieh K-L, Hsu C-Y, Acampora G, Chang C-C (2010) Ontology-based multi-agents for intelligent healthcare. J Ambient Intell Humaniz Comput 1:111–131

    Google Scholar 

  • Whitson HE, Johnson KS, Sloane R, Cigolle CT, Pieper CF, Landerman L, Hastings SN (2016) Identifying patterns of multimorbidity in older Americans: application of latent class analysis. J Am Geriatr Soc 64(8):1668–1673

    PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2018) The top 20 causes of death. http://www.who.int/healthinfo/global_burden_disease/estimates/en/index1.html. Accessed 10 April 2018

  • Wright RS, Anderson JL, Adams CD, Bridges CR, Casey DE, Ettinger SM et al (2011) 2011 ACCF/AHA focused update incorporated into the ACC/AHA 2007 guidelines for the management of patients with unstable angina/non–ST-elevation myocardial infarction: a report of the American college of cardiology foundation/American heart association task force on practice guidelines. J Am Coll Cardiol 57:215–367

    Google Scholar 

  • Wu J, Platero-Luengo A, Sakurai M, Sugawara A, Gil MA, Yamauchi T et al (2017) Interspecies chimerism with mammalian pluripotent stem cells. Cell 168(3):473–486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zarich SW, Sachdeva R, Fishman R et al (2004) Effectiveness of a multidisciplinary quality improvement initiative in reducing door-to-balloon times in primary angioplasty. J Interv Cardiol 17:191–195

    PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by funding from the Taiwan Ministry of Science and Technology (MOST103-2221-E-155-053-MY3). We thank Pei-Li Chung and Ming-Fen Guo for performing the data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chieh Lee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C., Lin, R.F., Huang, TC. et al. A symptom cluster-based triaging system for patients presenting to the emergency department with possible acute coronary syndromes. J Ambient Intell Human Comput 14, 14595–14609 (2023). https://doi.org/10.1007/s12652-018-0907-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-018-0907-z

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy