Skip to main content

Advertisement

Log in

5GhNet: an intelligent QoE aware RAT selection framework for 5G-enabled healthcare network

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

The COVID-19 outbreak has stimulated the digital transformation of antiquated healthcare system to a smart hospital, enabling the personalised and remote healthcare services. To augment the functionalities of these intelligent healthcare systems, 5G & B5G heterogeneous network has emerged as a robust and reliable solution. But the pivotal challenge for 5G & B5G connectivity solutions is to ensure flexible and agile service orchestration with acknowledged Quality of Experience (QoE). However, the existing radio access technology (RAT) selection strategies are incapacitated in terms of QoE provisioning and Quality of Service (QoS) maintenance. Therefore, an intelligent QoE aware RAT selection architecture based on software-defined wireless networking (SDWN) and edge computing has been proposed for 5G-enabled healthcare network. The proposed model leverages the principles of invalid action masking and multi-agent reinforcement learning to allow faster convergence to QoE optimised RAT selection policy. The analytical evaluation validates that the proposed scheme outperforms the other existing schemes in terms of enhancing personalised user-experience with efficient resource utilisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Availability of data and material

This manuscript has no associated data file.

References

  • Ahmad A, Floris A, Atzori L (2016) QoE-centric service delivery: a collaborative approach among OTTs and ISPs. Comput Netw 110:168–179. https://doi.org/10.1016/j.comnet.2016.09.022

    Article  Google Scholar 

  • Al-Janabi S (2018) Smart system to create an optimal higher education environment using IDA and IOTs. Int J Comput Appl 42:244–259. https://doi.org/10.1080/1206212X.2018.1512460

    Article  Google Scholar 

  • Al-Janabi S, Alkaim AF (2020) A nifty collaborative analysis to predicting a novel tool (DRFLLS) for missing values estimation. Soft Comput 24:555–569. https://doi.org/10.1007/s00500-019-03972-x

    Article  Google Scholar 

  • Al-Janabi S, Hussein NY (2020) The reality and future of the secure mobile cloud computing (SMCC): survey. In: Farhaoui Y (ed) Big data and networks technologies. BDNT 2019. Lecture notes in networks and systems. Springer, Cham, pp 231–261

    Google Scholar 

  • Al-Janabi S, Al-Shourbaji I, Shojafar M, Abdelhag M (2017) Mobile cloud computing: challenges and future research directions. In: Proceedings of 10th International Conference on Developments in eSystems Engineering (DeSE), IEEE, Paris, pp 62–67. https://doi.org/10.1109/DeSE.2017.21

  • Arabi S, Hammouti HE, Sabir E, Elbiaze H, Sadik M (2019) RAT association for autonomic IoT systems. IEEE Network 33(6):1–8. https://doi.org/10.1109/mnet.2019.1800513

    Article  Google Scholar 

  • Barmpounakis S, Kaloxylos A, Spapis P, Alonistioti (2017) Context-aware, user-driven, network-controlled RAT selection for 5G networks. Comput Netw 113:124–147

    Article  Google Scholar 

  • Bhatia M, Kumar K (2019) Network selection in cognitive radio enabled wireless body area networks. Digit Commun Netw 6:75–85. https://doi.org/10.1016/j.dcan.2018.03.003

    Article  Google Scholar 

  • Bhattacharya R et al (2019) QFlow: a reinforcement learning approach to high QoE video streaming over wireless networks. In: Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing. ACM, Catania, pp 251–260

  • Chen X, Li Z, Zhang Y, Long R, Yu H, Du X, Guizani M (2018) Reinforcement learning-based QoS/QoE-aware service function chaining in software-driven 5G slices. Trans Emerg Telecommun Technol e3477:1–18. https://doi.org/10.1002/ett.3477

    Article  Google Scholar 

  • Chen M, Li W, Hao Y, Qian Y, Humar I (2018) Edge cognitive computing based smart healthcare system. Futur Gener Comput Syst 86:403–411. https://doi.org/10.1016/j.future.2018.03.054

    Article  Google Scholar 

  • Cisotto G, Casarin E, Tomasin S (2020) Requirements and enablers of advanced healthcare services over future cellular systems. IEEE Commun Mag 58(3):76–81. https://doi.org/10.1109/MCOM.001.1900349

    Article  Google Scholar 

  • Desogus C, Anedda M, Murroni M, Muntean GM (2019) A traffic type-based differentiated reputation algorithm for radio resource allocation during multi-service content delivery in 5G heterogeneous scenarios. IEEE Access 7:27720–27735

    Article  Google Scholar 

  • Ding H, Zhao F, Tian J, Li D, Zhang H (2019) A deep reinforcement learning for user association and power control in heterogeneous networks. Ad Hoc Netw 102:1–18

    Google Scholar 

  • Du Z, Jiang B, Wu Q, Xu Y, Xu K (2020) Exploiting user demand diversity: QoE game and MARL based network selection. In: Du Z (ed) Towards user-centric intelligent network selection in 5G heterogeneous wireless networks. Springer, Singapore, pp 101–130

    Chapter  Google Scholar 

  • Efroni Y, Merlis N, Ghavamzadeh M, Mannor S (2019) Tight regret bounds for model-based reinforcement learning with greedy policies. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, pp 12224–12234

  • El Helou M, Ibrahim M, Lahoud S, Khawam K, Mezher D, Cousin B (2015) A network-assisted approach for RAT selection in heterogeneous cellular networks. IEEE J Sel Areas Commun 33(6):1055–1067

    Article  Google Scholar 

  • François-Lavet V, Henderson P, Islam R, Bellemare MG, Pineau J (2018) An introduction to deep reinforcement learning. Found Trends Mach Learn 11(3–4):219–354. https://doi.org/10.1561/2200000071

    Article  MATH  Google Scholar 

  • Goyal P, Lobiyal DK, Katti CP (2018) Game theory for vertical handoff decisions in heterogeneous wireless networks: a tutorial. In: Bhattacharyya S, Gandhi T, Sharma K, Dutta P (eds) Advanced computational and communication paradigms. Lecture notes in electrical engineering. Springer, Singapore, pp 422–430

    Google Scholar 

  • Hadi MS, Lawey AQ, El-Gorashi TEH, Elmirghani JMH (2020) Patient-centric HetNets powered by machine learning and big data analytics for 6G networks. IEEE Access 1:1–17. https://doi.org/10.1109/access.2020.2992555

    Article  Google Scholar 

  • Hao Y, Jiang Y, Hossain MS, Ghoneim A, Yang J, Humar I (2018) Data-driven resource management in a 5G wearable network using network slicing technology. IEEE Sens J 19(19):8379–8386. https://doi.org/10.1109/jsen.2018.2883976

    Article  Google Scholar 

  • Hasselt HV, Guez A, Silver D (2016) Deep reinforcement learning with double Q-learning. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoneix, pp 2094–2100

  • Hemmati M, McCormick B, Shirmohammadi S (2017) QoE-aware bandwidth allocation for video traffic using sigmoidal programming. IEEE Multimedia 24(4):80–90. https://doi.org/10.1109/MMUL.2017.4031305

    Article  Google Scholar 

  • Imran MA, Abdulrahman Sambo Y, Abbasi QH, Soldani D, Innocenti M (2020) 5G Communication systems and connected healthcare. In: Imran MA, Abdulrahman Sambo Y and Abbasi QH (eds) Enabling 5G Communication systems to support vertical industries. https://doi.org/10.1002/9781119515579.ch7

  • Johnson A, Pollard T, Mark R (2019) MIMIC-III clinical database demo (version 1.4). PhysioNet. https://doi.org/10.13026/C2HM2Q

    Article  Google Scholar 

  • Kim KS et al (2019) Ultrareliable and low-latency communication techniques for tactile internet services. Proc IEEE 107(2):376–393. https://doi.org/10.1109/JPROC.2018.2868995

    Article  Google Scholar 

  • Krishankumar R, Arun K, Kumar A et al (2021) Double-hierarchy hesitant fuzzy linguistic information-based framework for green supplier selection with partial weight information. Neural Comput Appl. https://doi.org/10.1007/s00521-021-06123-2

    Article  Google Scholar 

  • Kumar B, Sharma L, Wu SL (2019) Online distributed user association for heterogeneous radio access network. Sensors 19(6):1–23. https://doi.org/10.3390/s19061412

    Article  Google Scholar 

  • Lloret J, Parra L, Taha M, Tomás J (2017) An architecture and protocol for smart continuous eHealth monitoring using 5G. Comput Netw 129:340–351. https://doi.org/10.1016/j.comnet.2017.05.018

    Article  Google Scholar 

  • Malasinghe LP, Ramzan N, Dahal K (2017) Remote patient monitoring: a comprehensive study. J Ambient Intell Humaniz Comput 10(1):57–76. https://doi.org/10.1007/s12652-017-0598-x

    Article  Google Scholar 

  • Manjeshwar AN, Roy A, Jha P & Karandikar (2019) A control and management of multiple RATs in wireless networks: an SDN approach. In: Proceedings of the 2nd 5G World Forum (5GWF). IEEE, Dresden, pp 596–601. https://doi.org/10.1109/5GWF.2019.8911703

  • Mismar FB, Evans BL (2018) Deep Q-learning for self-organizing networks fault management and radio performance improvement. In: Proceedings of 52nd Asilomar conference on signals, systems, and computers - Pacific Grove, IEEE, CA, pp 1457–1461

  • Mollel MS, Abubakar AI, Ozturk M, Kaijage S, Kisangiri M, Zoha A, Abbasi QH (2020) Intelligent handover decision scheme using double deep reinforcement learning. Phys Commun 42(2020):1–12. https://doi.org/10.1016/j.phycom.2020.101133

    Article  Google Scholar 

  • Mukherjee A, Ghosh S, Behere A, Ghosh SK, Buyya R (2021) Internet of Health Things (IoHT) for personalized health care using integrated edge-fog-cloud network. J Ambient Intell Humaniz Comput 12:943–959. https://doi.org/10.1007/s12652-020-02113-9

    Article  Google Scholar 

  • Nasir YS, Guo D (2019) Multi-agent deep reinforcement learning for dynamic power allocation in wireless networks. IEEE J Sel Areas Commun 37(10):2239–2250. https://doi.org/10.1109/JSAC.2019.2933973

    Article  Google Scholar 

  • Nguyen DD, Nguyen HX, White LB (2017) Reinforcement learning with network-assisted feedback for heterogeneous RAT selection. IEEE Trans Wireless Commun 16(9):6062–6076

    Article  Google Scholar 

  • Ning Z, Dong P, Wang X, Hu X, Guo L, Hu B, Guo Y, Qiu T, Kwok RYK (2020) Mobile edge computing enabled 5G health monitoring for internet of medical things: a decentralized game theoretic approach. IEEE J Select Area Commun 39(2):463–478

    Article  Google Scholar 

  • Patel A, Al-Janabi S, AlShourbaji I, Pedersen J (2015) A novel methodology towards a trusted environment in mashup web applications. Comput Secur 49:107–122

    Article  Google Scholar 

  • Pedregosa F et al. (2011) Neural network models (supervised). scikit-learn. https://scikit-learn.org/stable/modules/neural_networks_supervised.html. Accessed 15 Aug 2021

  • Priya B, Malhotra J (2020) 5GAuNetS: an autonomous 5G network selection framework for Industry 4.0. Soft Comput 24:9507–9523. https://doi.org/10.1007/s00500-019-04460-y

    Article  Google Scholar 

  • Priya B, Malhotra J (2020) QAAs: QoS provisioned artificial intelligence framework for AP selection in next-generation wireless networks. Telecommun Syst. https://doi.org/10.1007/s11235-020-00710-9

    Article  Google Scholar 

  • Rahmani Amir M, Gia Tuan N, Negash B, Anzanpour A, Azimi I, Jiang M, Liljeberg P (2017) Exploiting smart e-health gateways at the edge of healthcare Internet-of-Things: a fog computing approach. Futur Gener Comput Syst 78:641–658. https://doi.org/10.1016/j.future.2017.02.014

    Article  Google Scholar 

  • Rajesh L, Boopathybagan K, Ramesh B (2017) User demand wireless network selection using game theory. In: Nath V (ed) Proceedings of the international conference on nano-electronics, circuits and communication systems. Lecture notes in electrical engineering. Springer, Singapore, pp 39–53

    Google Scholar 

  • Rustam F et al (2020) Sensor-based human activity recognition using deep stacked multilayered perceptron model. IEEE Access 8:218898–218910. https://doi.org/10.1109/ACCESS.2020.3041822

    Article  Google Scholar 

  • Salih YK, See OH, Ibrahim RW (2016) An intelligent selection method based on game theory in heterogeneous wireless networks. Trans Emerg Telecommun Technol 27(12):1641–1652. https://doi.org/10.1002/ett.3102

    Article  Google Scholar 

  • Sandoval RM, Canovas-Carrasco S, Garcia-Sanchez A, Garcia-Haro J (2019) A reinforcement learning-based framework for the exploitation of multiple RATs in the IoT. IEEE Access 7:123341–123354. https://doi.org/10.1109/ACCESS.2019.2938084

    Article  Google Scholar 

  • Saraiva J, Braga IM, Monteiro VF, Lima FRM, Maciel T, Freitas W, Cavalcanti FRP (2020) Deep reinforcement learning for QoS-constrained resource allocation in multiservice networks. J Commun Inf Syst 35(1):66–76

    Google Scholar 

  • Serpen G, Gao Z (2014) Complexity analysis of multilayer perceptron neural network embedded into a wireless sensor network. Procedia Comput Sci 36:192–197. https://doi.org/10.1016/j.procs.2014.09.078

    Article  Google Scholar 

  • Shantharama P, Thyagaturu A, Karakoc N, Ferrari L, Reisslein M, Scaglione A (2018) LayBack: SDN management of multi-access edge computing (MEC) for network access services and radio resource sharing. IEEE Access 6:57545–57561. https://doi.org/10.1109/ACCESS.2018.2873984

    Article  Google Scholar 

  • Simsek M, Aijaz A, Dohler M, Sachs J, Fettweis G (2016) 5G-Enabled tactile internet. IEEE J Sel Areas Commun 34(3):460–473. https://doi.org/10.1109/jsac.2016.2525398

    Article  Google Scholar 

  • Skondras E, Michalas A, Vergados DD (2019) Mobility management on 5G vehicular cloud computing systems. Veh Commun 16(2019):15–44. https://doi.org/10.1016/j.vehcom.2019.01.001

    Article  Google Scholar 

  • Sun P, Guo Z, Wang G, Lan J, Hu Y (2020) MARVEL: enabling controller load balancing in software-defined networks with multi-agent reinforcement learning. Comput Netw 177:1–10. https://doi.org/10.1016/j.comnet.2020.107230

    Article  Google Scholar 

  • Tartarini L, Marotta MA, Cerqueira E, Rochol J, Both CB, Gerla M, Bellavista P (2017) Software-defined handover decision engine for heterogeneous cloud radio access networks. Comput Commun 115:21–34. https://doi.org/10.1016/j.comcom.2017.10.018

    Article  Google Scholar 

  • Thuemmler C, Paulin A, Lim AK (2016) Determinants of next generation e-health network and architecture specifications. In: Proceedings of IEEE 18th Int. Conf. on e-Health Networking, Applications and Services (Healthcom). IEEE, Munich, pp 1–6

  • Ugalmugale S, Swain R (2020) Telemedicine Market Size By Service (Tele-consulting, Tele-monitoring, Tele-education/training), By Type (Telehospital, Telehome), By Specialty (Cardiology, Gynecology, Neurology, Orthopedics, Dermatology, Mental Health), By Delivery Mode (Web/Mobile Telephonic, Visualized, Call Centers), Industry Analysis Report, Regional Outlook, Growth Potential, Price Trends, Competitive Market Share & Forecast, 2020–2026. Global Market Insights.https://www.gminsights.com/industry-analysis/telemedicine-market. Accessed 26 Sep 2020

  • Van D, Ai Q, Liu Q (2017) Vertical handover algorithm for WBANs in ubiquitous healthcare with quality of service guarantees. Information 8(1):1–16. https://doi.org/10.3390/info8010034

    Article  Google Scholar 

  • Varga N, Piri E, Bokor L (2015) Network-assisted smart access point selection for pervasive real-time mHealth applications. Procedia Comput Sci 63:317–324. https://doi.org/10.1016/j.procs.2015.08.349

    Article  Google Scholar 

  • Vinayakumar R, Alazab M, Soman KP, Poornachandran P, Al-Nemrat A, Venkatraman S (2019) Deep learning approach for intelligent intrusion detection system. IEEE Access 7:41525–41550. https://doi.org/10.1109/ACCESS.2019.2895334

    Article  Google Scholar 

  • Wang Y et al (2017) A data-driven architecture for personalized QoE management in 5G wireless networks. IEEE Wirel Commun 24(1):102–110. https://doi.org/10.1109/MWC.2016.1500184WC

    Article  Google Scholar 

  • Wang X, Li J, Wang L, Yang C, Han Z (2019) Intelligent user-centric network selection: a model-driven reinforcement learning framework. IEEE Access 7:21645–21661. https://doi.org/10.1109/ACCESS.2019.2898205

    Article  Google Scholar 

  • Wang X, Su X & Liu B (2019) A novel network selection approach in 5G heterogeneous networks using Q-learning. In: Proceedings of the 26th International Conference on Telecommunications (ICT). IEEE, Hanoi, pp 309–313. https://doi.org/10.1109/ICT.2019.8798797

  • Xu F, Ye H, Yang F, Zhao C (2019) Software defined mission-critical wireless sensor network: architecture and edge offloading strategy. IEEE Access 7:10383–10391. https://doi.org/10.1109/access.2019.2890854

    Article  Google Scholar 

  • Yadav P, Agrawal R, Kashish K (2018) Heterogeneous network access for seamless data transmission in remote healthcare. Int J Grid Distrib Comput 11(8):69–86

    Article  Google Scholar 

  • Yamamoto H et al (2020) Forecasting crypto-asset price using influencer tweets. In: Barolli L, Takizawa M, Xhafa F, Enokido T (eds) Advanced information networking and applications. AINA 2019. Advances in intelligent systems and computing. Springer, Cham, pp 940–951

    Google Scholar 

  • Zhang Q, Lin M, Yang LT, Chen Z, Khan SU, Li P (2018) A double deep Q-learning model for energy-efficient edge scheduling. IEEE Trans Serv Comput 12(5):739–749

    Article  Google Scholar 

  • Zhang Q, Liang Y-C, Poor HV (2020) Intelligent user association for symbiotic radio networks using deep reinforcement learning. IEEE Trans Wireless Commun 19(7):4535–4548. https://doi.org/10.1109/TWC.2020.2984758

    Article  Google Scholar 

  • Zhang Q, Liu J & Zhao G (2018) Towards 5G enabled tactile robotic telesurgery. arXiv:1803.03586 [cs.NI]. https://arxiv.org/pdf/1803.03586.pdf. Accessed 15 July 2020

  • Zhang X, Sen S, Kurniawan D, Gunawi H, Jiang J (2019) E2E: embracing user heterogeneity to improve quality of experience on the web. In: Proceedings of the ACM Special Interest Group on Data Communication - SIGCOMM ’19, ACM, Beijing, pp 289–302. https://doi.org/10.1145/3341302.3342089

  • Zhang K,Yang Z & Basar T (2019) Multi-agent reinforcement learning: a selective overview of theories and algorithms. arXiv:1911.10635. https://arxiv.org/pdf/1911.10635.pdf. Accessed 27 July 2020

  • Zhao N, Liang YC, Niyato D, Pei Y, Wu M, Jiang Y (2019) Deep reinforcement learning for user association and resource allocation in heterogeneous cellular networks. IEEE Trans Wireless Commun 18(11):5141–5152

    Article  Google Scholar 

  • Zhong Y, Wang H, Lv H (2020) A cognitive wireless networks access selection algorithm based on MADM. Ad Hoc Netw 109(2020):1–9. https://doi.org/10.1016/j.adhoc.2020.102286

    Article  Google Scholar 

  • Zhu A, Guo S, Liu B, Ma M, Feng H, Su X (2019) Adaptive multi-service heterogeneous network selection scheme in mobile edge computing. IEEE Internet Things J 6(4):6862–6875. https://doi.org/10.1109/jiot.2019.2912155

    Article  Google Scholar 

Download references

Acknowledgements

Author would like to thank University Grant Commission, New Delhi for Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priya, B., Malhotra, J. 5GhNet: an intelligent QoE aware RAT selection framework for 5G-enabled healthcare network. J Ambient Intell Human Comput 14, 8387–8408 (2023). https://doi.org/10.1007/s12652-021-03606-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-021-03606-x

Keywords

Profiles

  1. Bhanu Priya
  2. Jyoteesh Malhotra
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy