Abstract
The present paper focuses on the reflectance spectral imaging of painted surfaces in the visible-near infrared spectral region (400–2500 nm). Other spectral ranges and methods are mentioned, to contextualize the spectral investigation of works of art.
Similar content being viewed by others
Abbreviations
- \(\mu \)XRF:
-
Micro-X-Ray Fluorescence
- 2D:
-
Two-dimensional
- 3D:
-
Three-dimensional
- ANN:
-
Artificial neural network
- APD:
-
Avalanche photodiode
- B :
-
Blue
- BR-RIS :
-
Broad spectral range reflectance imaging spectroscopy
- CCD :
-
Charge-coupled device
- EDS :
-
Energy dispersive spectroscopy
- EMCCD :
-
Electron-multiplying CCD
- FORS :
-
Fiber optics reflectance spectroscopy
- FOV :
-
Field of view
- FPA :
-
Focal plane array
- FT:
-
Fourier transform
- FT-IR :
-
Fourier transform infrared
- FWHM:
-
Full width at half maximum
- G:
-
Green
- HS :
-
Hyperspectral
- HS-RIS :
-
Hyperspectral reflectance imaging spectroscopy
- HSI:
-
Hyperspectral imaging
- ICCD:
-
intensified CCD
- InGaAs :
-
Indium gallium arsenide
- IRR:
-
Infrared reflectography
- IS:
-
Imaging spectroscopy
- LWIR:
-
Longwave infrared
- MA-XRF :
-
Macro X-Ray fluorescence
- MA-XRF-SR:
-
Synchrotron-based macro X-ray fluorescence
- MB :
-
Multiband
- MCD:
-
Multi-channel detector
- MCT:
-
Mercury cadmium telluride
- MNF:
-
Minimum noise factor transform
- MS :
-
Multispectral
- MS-RIS:
-
Multispectral reflectance imaging spectroscopy
- MSI :
-
Multispectral imaging
- MWIR :
-
Midwave infrared
- NG :
-
National Gallery
- NIR:
-
Near infrared
- OCT:
-
Optical coherence tomography
- OPD:
-
Optical path difference
- PAI:
-
Photoacoustic imaging
- PCA:
-
Principle component analysis
- PD :
-
Photodiode
- PLM:
-
Polarized light microscopy
- PMT:
-
Photomultiplier tube
- R :
-
Red
- RF :
-
Radio frequency
- RIS:
-
Reflectance imaging spectroscopy
- RTI:
-
Reflectance transformation imaging
- SCD:
-
Single-channel detector
- SAM:
-
Spectral angle mapper
- SCM:
-
Spectral correlation mapping
- sCMOS:
-
Scientific complementary metal–oxide semiconductor
- SEM:
-
Scanning electron microscopy
- SMACC:
-
Sequential maximum-angle convex cone
- SNR:
-
Signal to noise ratio
- SR-XRF:
-
Synchrotron radiation X-Ray fluorescence
- SWIR:
-
Shortwave infrared
- THz-TDS:
-
Terahertz time-domain spectroscopy
- US:
-
Ultrasound
- UVVISNIR:
-
Ultraviolet, visible and near-infrared
- VIS:
-
Visible
- XFM:
-
X-Ray fluorescence microscopy
- XRF:
-
X-Ray fluorescence
- XRR:
-
X-ray radiography
References
A.F. Goetz, G. Vane, J.E. Solomon, B.N. Rock, Science 4704, 1147–53 (1985)
G.J. Tserevelakis, I. Vrouvaki, P. Siozos, K. Melessanaki, K. Hatzigiannakis, C. Fotakis et al., Sci. Rep. 7, 747 (2017). https://doi.org/10.1038/s41598-017-00873-7
R. N. Clark, Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, in VOLUME 3 Remote Sensing for the Earth Sciences, edited by A.N. Rencz (John Wiley and Sons, New York), pp. 3–58 (1999)
D.W. Ball, Spectroscopy 10, 16–18 (1995)
C. Fischer, I. Kakoulli, Stud. Conserv. 51, 3–16 (2006)
P. Ricciardi, A. Pallipurath, K. Rose, Anal. Methods 5, 3819 (2013)
C. Cucci, A. Casini, Hyperspectral imaging for artworks investigation, in Data Handl. Sci. Techn., Hyperspectral Imaging, edited by J.M. Amigo (2020 Elsevier) 32, pp. 583–604
M. Born, E. Wolf, Principles of optics: electromagnetic theory of propagation, interference, and diffraction of light (Cambridge University Press, Cambridge, 1999). https://doi.org/10.1017/CBO9781139644181
G. ElMasry, D. Sun, Chapter 1 - Principles of Hyperspectral Imaging Technology, in Hyperspectral Imaging for Food Quality Analysis and Control, edited by Da-Wen Sun (Elsevier), pp. 3–43 (2010). https://doi.org/10.1016/C2009-0-01853-4
G.R. Hunt, Geophysics 42, 501–513 (1977)
R.N. Clark, T.V.V. King, M. Klejwa, G.A. Swayze, N.J. Vergo, Geophys Res. 95, 653–680 (1990)
C.M. Pieters, W.E. Englert, Remote geochemical analysis: elemental and mineralogical composition (Cambridge University Press, New York, 1993)
R.N. Clark, G.A. Swayze, Mapping minerals, amorphous materials environmental materials, vegetation, water, ice and snow, and other materials: The USGS Tricorder algorithm, in Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, edited by Green R.O. (Jet Propul. Lab., Pasadena, Calif.) pp. 39–40 (1995)
A.N. Rencz, Manual of remote sensing, vol. 707 (Wiley, New York, 1999)
G.K. Moore, Hydrolog. Sci. Bull. 24, 477–485 (1979)
W.G. Rees, Physical principles of remote sensing (Cambridge University Press, Cambridge, 2001)
J.R. Jensen, remote sensing of the environment: an earth resource perspective, (Pearson Education Singapore Pte. Ltd., Indian Branch: New Delhi) (2004)
G. Vane, A.F.H. Goetz, Rem. Sens. Environ. 24, 1–29 (1988)
G. Vane, A.F.H. Goetz, Rem. Sens. Environ. 44, 117–126 (1993)
A.F.H. Goetz, Rem. Sens. Environ. 113, S5–S16 (2009)
M.E. Schaepman, S.L. Ustin, A.J. Plaza, T.H. Painter, J. Verrelst, S. Liang, Rem. Sens. Environ. 113, S123–S137 (2009)
P.N. Slater, Rem. Sens. Environ. 17, 85–102 (1985)
https://modis.gsfc.nasa.gov/. Accessed 18 May 2020
H.F. Grahn, P. Geladi, Techniques and applications of hyperspectral image analysis, (Wiley, The Atrium, Southern Gate, Chichester) (2007). https://doi.org/10.1002/9780470010884
B. Park, K.C. Lawrence, W.R. Windham, D.P. Smith, P.W. Feldner, Hyperspectral imaging for food processing automation, in Proc. SPIE 4816, Imaging Spectrometry VIII, edited by Shen S.S. (The International Society for Optical Engineering), pp. 308–316 (2002)
J. Burger, P. Geladi, The Analyst 131, 1152–1160 (2006)
C. Balas, IEEE Trans. Biomed. Eng. 48, 96–104 (2001)
P. Geladi, H. F. Grahn, Multivariate and Hyperspectral Image Analysis, in Encyclopedia of Analytical Chemistry, edited by Meyers R. A. (John Wiley and Sons Ltd), pp. 14349–14374 (2008)
E. Herrala, T. Hyvarinen, O. Voutilainen, J. Lammasniemi, Sens. Actuat. A Phys. 61, 335–338 (1997)
J. Xing, C. Bravo, T. Pál, H. Jancsók, J. Ramon, J.D. Baerdemaeker, Biosyst. Eng. 90, 27–36 (2005)
P.W.T. Yuen, M. Richardson, Imaging Sci. J. 58, 241–253 (2010). https://doi.org/10.1179/174313110X12771950995716
G.M. Miskelly, J.H. Wagner, Foren. Sci. Int. 155, 112–118 (2005)
G. Payne, C. Wallace, B. Reedy, C. Lennard, R. Schuler, D. Exline, C. Roux, Talanta 67, 334–344 (2005)
C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, G.A. Themelis, J. Cult. Herit. 4, 330–227 (2003). https://doi.org/10.1016/S1296-2074(02)01216-5
A. Casini, M. Bacci, C. Cucci, F. Lotti, S. Porcinai, M. Picollo, B. Radicati, M. Poggesi, L. Stefani, Fiber optic reflectance spectroscopy and hyper-spectral image spectroscopy: two integrated techniques for the study of the Madonna dei Fusi, in Proc. SPIE 5857, Optical Methods for Arts and Archaeology, edited by Salimbeni R. and Pezzati L. (The International Society for Optical Engineering), (2005), https://doi.org/10.1117/12.611500
C. Cucci, A. Casini, M. Picollo, M. Poggesi, L. Stefani, Open issues in hyperspectral imaging for diagnostics on paintings: when high-spectral and spatial resolution turns into data redundancy, in Proc. SPIE 8084, O3A: Optics for Arts, Architecture, and Archaeology III, 808408, edited by Pezzati L. and Salimbeni R. (The International Society for Optical Engineering), (2011), https://doi.org/10.1117/12.889460
C. Cucci, J.K. Delaney, M. Picollo, Acc. Chem. Res. 49, 2070–2079 (2016). https://doi.org/10.1021/acs.accounts.6b00048
J.K. Delaney, J.G. Zeibel, M. Thoury, R. Littleton, M. Palmer, K.M. Morales, A. Hoenigswald, Appl. Spectrosc. 64, 584–594 (2010). https://doi.org/10.1366/000370210791414443
J.R.J. Van De Asperen Boer, Appl. Opt. 7, 1711–1714 (1968). https://doi.org/10.1364/AO.7.001711
E. Ciliberto, Modern Analytical Methods in Art and Archaeology, inAnalytical Methods in Art and Archaeology, edited by Ciliberto E. and Spoto G. (Wiley, New York), (2000)
A. Burmester, J. Cupitt, H. Derrien, N. Dessipris, A. Hamber, K. Martinez, M. Müller, D. Saunders, The examination of paintings by digital image analysis, in 3rd International Conference on Non Destructive Testing, Microanalytical Methods and Environmental Evaluation for Study and Conservation of Works of Art Rome, edited by Marabelli M. and Santopadre P. (The International Society for Optical Engineering), pp. 199–214 (1992)
K. Martinez, J. Cupitt, D. Saunders, High resolution colorimetric imaging of paintings, in Proc SPIE 1901, Cameras, Scanners, and Image Acquisition Systems,edited by Marz H. and Nielsen R.L. (The International Society for Optical Engineering), pp. 25–36 (1993), https://doi.org/10.1117/12.144795
S. Baronti, A. Casini, F. Lotti, S. Porcinai, Chemom. Intell. Lab. Syst. 2, 103–114 (1997). https://doi.org/10.1016/S0169-7439(97)00047-6
S. Baronti, A. Casini, F. Lotti, S. Porcinai, Appl. Opt. 8, 1299–1309 (1998). https://doi.org/10.1364/AO.37.001299
H. Maitre, F. Schmitt, J.-P. Crettez, Y. Wu, J.Y. Hardeberg, D. Saunders, Spectrophotometric image analysis of fine art paintings, in Proc IST and SID Fourth Colour Imaging Conference edited by Marz H. and Nielsen R.L. (Society for Imaging Science and Technology), pp. 50–53 (1996), https://doi.org/10.1117/12.144795
A. Casini, F. Lotti, M. Picollo, L. Stefani, E. Buzzegoli, Stud. Conserv. 44, 39–48 (1999). https://doi.org/10.1007/s11045-016-0429-9
D. Saunders, J. Cupitt, Natl. Gallery Tech. Bull. 14, 72–85 (1993)
H. Derrien, Inf. Serv. Use 13(4), 357–369 (1993)
J. Cupitt, K. Martinez, D. Saunders, Comput. Hist. 6, 1–20 (1996)
K. Martinez, J. Cupitt, D. Saunders, R. Pillay, Proc. IEEE 90(1), 28–41 (2002). https://doi.org/10.1109/5.982403
H. Liang, D. Saunders, J. Cupitt, JIST 49(6), 551–562 (2005)
C. Lahanier, G. Alquié, P. Cotte, C. Christofides, C. De Deyne, R. Pillay, D. Saunders, F. Schmitt, CRISATEL: High definition spectral digital imaging of paintings with simulation of varnish removal, in Proc. 3rd triennal meeting ICOM-CC, Rio de Janeiro, 22–27 September 2002 (London: James and James), edited by Vontobel R., pp. 295–300 (2002)
A. Ribés, H. Brettel, F. Schmitt, H. Liang, D. Saunders, Color and multispectral imaging with the CRISATEL multispectral system, in Proc PICS, the digital photography conference: processing images, image quality, capturing images, systems (NY: society for imaging science and technology), edited by Vontobel R., pp. 215–219 (2003)
P. Cotte, D. Dupraz, Spectral imaging of Leonardo Da Vinci’s Mona Lisa: An authentic smile at 1523 dpi with additional infrared data in Proc. IST PICS Conference Archiving 06 (Society for Imaging Science and Technology), pp. 228–235(8), (2006)
A. Ribés, R. Pillay, F. Schmitt, C. Lahanier, IEEE Signal Process. Mag.25(4), 14–26 (2008)
F. Imai, M. Rosen, R. Berns, Multispectral imaging of Van Gogh’s self-portrait at the National Gallery of Art, Washington, D.C. in Proc. IST PICS Conference Montreal, Quebec, Canada (Society for Imaging Science and Technology), pp. 185–189 (2001)
M. Bacci, A. Casini, C. Cucci, A. Muzzi, S. Porcinai, J. Cult. Herit.6, 329–36 (2005). https://doi.org/10.1016/j.culher.2005.07.002
P. Carcagnì, Patria, A. Della, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, Opt. Lasers Eng. 45, 360–367 (2007)
R. Fontana, D. Bencini, P. Carcagnì, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, Multi-spectral IR reflectography, in Proc. SPIE 6618, Optical Methods for Arts and Archaeology, edited by Salimbeni R. and Pezzati L. (The International Society for Optical Engineering), pp. 661813–15 (2007)
C. Bonifazzi, P. Carcagnì, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, D. Bencini, J. Opt. A Pure Appl. Opt. 10(6), 064011 (2008)
C. Daffara, E. Pampaloni, L. Pezzati, M. Barucci, R. Fontana, Acc. Chem. Res. 43(6), 847–856 (2010). https://doi.org/10.1021/ar900268t
R. Fontana, M. Barucci, P. Carcagn, C. Daffara, E. Pampaloni, L. Pezzati, Autofocus laser system for multi-NIR scanning imaging of painting surfaces, in Proc. SPIE 8084, Optics for Arts, Architecture, and Archaeology III, edited by Pezzati L. and Salimbeni R. (The International Society for Optical Engineering), pp. 808405 (2011)
C. Daffara, R. Fontana, Microsc. Microanal 17, 691–695 (2011)
R. Fontana, M. Barucci, E. Pampaloni, J. Striova, L. Pezzati, From Leonardo to Raffaello: insights by Vis-IR reflectography, in Acta Artis Academica, Interpretation of Fine Art’s analysis in diverse contexts, edited by D. Hradil, J. Hradilova (Academy of Fine Arts, Prague), pp. 15–26 (2014)
R. Fontana, J. Striova, M. Barucci, E. Pampaloni, M. Raffaelli, L. Pezzati, P. Mariotti, Limewashed mural paintings as seen by VIS-IR reflectography, inProc. SPIE 9527, Optics for Arts, Architecture, and Archaeology V, edited by Pezzati L. and Targowski P. (The International Society for Optical Engineering), pp. 9527 (2015)
J. Striova, C. Ruberto, M. Barucci, J. Blažek, D. Kunzelman, A. Dal Fovo, E. Pampaloni, R. Fontana, Angew. Chem. 57, 1–6 (2018). https://doi.org/10.1002/anie.201800624
A. Pelagotti, A. Del Mastio, A. De Rosa, A. Piva, IEEE Signal Process. Mag. 25, 27–36 (2008)
J.K. Delaney, E. Walmsley, B. H. Berrie, C.F. Fletcher, Multispectral imaging of paintings in the infrared to detect and to map blue pigments, in Sackler NAS Colloquium, Scientific Examination of art: Modern Techniques in Conservation and Analysis, edited by Pezzati L. and Targowski P. (The National Academies press, Washington, D.C.), pp. 120–136 (2005)
J.R. Mansfield, M. Attas, C. Majzels, E. Cloutis, C. Collins, H.H. Mantsch, Vib. Spectrosc. 28(1), 59–66 (2002)
S. Kogou, A. Lucian, S. Bellesia, L. Burgio, K. Bailey, C. Brooks et al., Appl. Phys. A 15, (2015). https://doi.org/10.1007/s00339-015-9425-4
M. Bacci, F. Baldini, R. Carla, R. Linari, Appl. Spectrosc. 45, 26–31 (1991)
M. Attas, E. Cloutis, C. Collins, D. Goltz, C. Majzels, J.R. Mansfield, H.H. Mantsch, J. Cult. Herit. 4, 127–136 (2003)
J.R. Mansfield, M.G. Sowa, C. Majzels, C. Collins, E. Cloutis, H.H. Mantsch, Vib. Spectrosc. 19, 33–45 (1999)
M. Picollo, M. Bacci, A. Casini, F. Lotti, S. Porciani, B. Radicati, L. Stefani, Fiber Optics Reflectance Spectroscopy: a non-destructive technique for the analysis of works of art, in Optical sensors and microsystems, edited by Martellucci S., Chester A.N. and Mignani A.G (Springer, Boston, MA), pp. 259–265 (2002)
M. Leona, J. Winter, Stud. Conserv. 46, 153–162 (2001)
M. Leona, F. Casadio, M. Bacci, M.J. Picollo, Am. Inst. Conservat.43, 39–54 (2004)
G. Dupuis, M. Elias, L. Simonot, Appl. Spectrosc. 56, 1329–36 (2002)
C. Cucci, G. Bartolozzi, M. De Vita, V. Marchiafava, M. Picollo, F. Casadio, Appl. Spectrosc. 70, 186–96 (2016). https://doi.org/10.1177/0003702815615346
M. Bacci, M. Picollo, G. Trumpy, M. Tsukada, J. Kunzelman, Am. Inst. Conservat. 46, 27–37 (2007). https://doi.org/10.1179/019713607806112413
M. Bacci, A. Casini, C. Cucci, M. Piccolo, B. Radicati, M. Vervat, J. Cult. Herit. 4, 329–36 (2003). https://doi.org/10.1016/j.culher.2003.09.003
http://fors.ifac.cnr.it/. Accessed 18 May 2020
M. Kubik, Hyperspectral imaging: a new technique for the non-invasive study of artworks, in Physical Techniques in the Study of Art, Archaeology and Cultural Heritage, edited by Creagh D. and Bradley D. (Elsevier Science, The Netherlands), pp. 199–271 (2007)
J.K. Delaney, J.G. Zeibel, M. Thoury, R. Littleton, K.M. Morales, M. Palmer et al., Visible and infrared reflectance imaging spectroscopy of paintings: pigment mapping and improved infrared reflectography, in Proc. SPIE 7391, Optics for Arts, Architecture, and Archaeology II, edited by Pezzati L. and Salimbeni R. (The International Society for Optical Engineering), pp. 739103 (2009), https://doi.org/10.1117/12.82749
L.W. MacDonald, T. Vitorino, M. Picollo, R. Pillay, M. Obarzanowski, J. Sobczyk, S. Nascimento, J. Linhares, Herit. Sci.,5, https://doi.org/10.1186/s40494-017-0154-1, (2017)
M. Kubik, Hyperspectral image spectroscopy: a 2D approach to the investigation of polychrome surfaces, in Proc. Conserv. Sci., edited by Townsend J., Toniolo L. and Capitelli F. (Archetype publications), pp. 10 (2007)
C. Cucci, A. Casini, M. Picollo, L. Stefani, Extending HyperSpectral Imaging from Vis to NIR spectral regions: a novel scanner for the indepth analysis of polychrome surfaces, in Proc SPIE 8790, Optics for Arts, Architecture, and Archaeology IV, edited by Pezzati L. and Targowski P. (The International Society for Optical Engineering), (2015)
G. Antonioli, F. Fermi, C. Oleari, R. Riverberi, Spectrophotometric scanner for imaging of paintings and other works of art, in Proc. CGIV 2nd European Conf. on Color in Graphics, Imaging, and Vision, (Society for Imaging Science and Technology, Springfield), pp. 219–224 (2004)
C. Balas, D. Pelecoudas, International Patent App., Patent No.: US 7,042,567 B2, PCT/GR00/00039 (2006)
O. Theodoropoulou, G. Tsairis, Non-destructive analysis of two post-Byzantine icons by use of the multi spectral imaging system (MU.S.I.S. 2007, in Optics and Lasers in Biomedicine and Culture, edited Fotakis C., Papazoglou T.G. and Kalpouzos C. (Springer-Verlag Berlin Heidelberg), (2000)
H. Liang, K. Keita, T. Vajzovic, PRISMS: a portable multispectral imaging system for remote in situ examination of wall paintings, in Proc. SPIE 661815, O3A: Optics for Arts, Architecture, and Archaeology, edited by Salimbeni R. and Pezzati L. (The International Society for Optical Engineering), (2007)
H. Liang, Appl. Phys. A 106, 309–323 (2012). https://doi.org/10.1007/s00339-011-6689-1
J.K. Delaney, K.A. Dooley, R. Radpour, I. Kakoulli, Sci. Rep. 7, 115509 (2017)
J.K. Delaney, D.M. Conover, L. Glinsman, K. Janssens, M. Loew, Herit. Sci. 6, (2018). https://doi.org/10.1186/s40494-018-0197-y
C. Cucci, A. Casini, L. Stefani, M. Picollo, J. Jussila, Bridging research with innovative products: a compact hyperspectral camera for investigating artworks: a feasibility study, in Proc. SPIE 10331, O3A: Optics for Arts, Architecture, and Archaeology VI, edited by Pezzati L. and Targowski P. (The International Society for Optical Engineering), 1–13 (2017)
Z. Wang, D. Lu, D. Zhang, M. Sun, Y. Zhou, Multidim. Syst. Sign. Process 27, 1031–1044 (2016). https://doi.org/10.1007/s11045-016-0429-9
S. Kogou, A. Lucian, S. Bellesia, L. Burgio, K. Bailey, C. Brooks et al., Appl. Phys. A 15, (2015). https://doi.org/10.1007/s00339-015-9425-4
S. Kogou, S. Neate, C. Coveney, A. Miles, D. Boocock, L. Burgio et al., Herit. Sci. 4, (2016). https://doi.org/10.1186/s40494-016-0098-x
A. Polak, T. Kelman, P. Murray, S. Marshall, D.J. Stothard, N. Eastaugh, F. Eastaugh, J. Cult. Herit. 26, 1–11 (2017). https://doi.org/10.1016/j.culher.2017.01.013
J. Blažek, J. Striova, R. Fontana, B. Zitova, Digit. Signal Process.60, 140–151 (2017). https://doi.org/10.1016/j.dsp.2016.09.007
P. Ricciardi, J.K. Delaney, M. Facini, L. Glinsman, P J. Am. Inst. Conservat. 52, 13–29 (2013). https://doi.org/10.1179/0197136012Z.0000000004
G. Maino, M. Monti, Color Management and Virtual Restoration of Artworks, in Color Image and Video Enhancement, edited by Celebi E., Lecca M. and Smolka B. (Springer), pp. 183–231 (2015)
M. Monti, G. Maino, Image Processing and a Virtual Restoration Hypothesis for Mosaics and Their Cartoons, in Image Analysis and Processing – ICIAP, edited by Maino G. and Foresti G.L. (Springer), (2011)
D. Riccio, S. Caggiano, M. De Marsico, R. Distasi, M. Nappi, Mosaic+: tools to assist virtual restorations, in The 21st International Conference on Distributed Multimedia Systems, edited by Maino G. and Foresti G.L. (Springer), pp. 284–291 (2015), https://doi.org/10.18293/DMS2015-049
L. Butler, S. Kogou, Y. Li, C.S. Cheung, H. Liang, A.T. Gallop, P. Garside, C. Duffy, Machine learning analysis of illuminated Southeast Asian manuscripts using complementary noninvasive imaging techniques, in Proc. SPIE 11058, O3A: Optics for Arts, Architecture, and Archaeology VII, 110581M, edited by Liang H., Groves R. and Targowski P. (The International Society for Optical Engineering), (2019), https://doi.org/10.1117/12.25275760
D.M. Conover, J.K. Delaney, M.H. Loew, Appl. Phys. A 119, 1567–157 (2015). https://doi.org/10.1007/s00339-015-9140-1
F. Micheletti, L. Stefani, C. Cucci, M. Picollo, CNR Retrieval of Images from Hyper-Spectral Data through Interactive Network Access (CRISTINA), in Proceedings of Electronic Imaging and the Visual Arts EVA, edited by V. Cappellini (Firenze University Press, Florence), 140–145 (2013)
E. Bertin, R. Pillay, C. Marmo, Astron. Comput. 10, 43–53 (2015). https://doi.org/10.1016/j.ascom.2014.12.006
M. Eichenholz, N. Barnett, Y. Juang, D. Fish, S. Spano, E. Lindsley, D.L. Farkas, Real-time megapixel multispectral bioimaging, in Proc. SPIE 7568, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VIII, edited by Farkas D.L., Nicolau D.V. and Leif R.C. (The International Society for Optical Engineering), (2010), https://doi.org/10.1117/12.842563
J. Olson, R. Jungquist, Z. Ninkov, Tunable multi-spectral imaging system technology for airborne applications, in Proc. SPIE 2480, Imaging Spectrometry, edited by Descour M.R., Mooney J.M., Perry D.L. and Illing L.R. (The International Society for Optical Engineering), (1995), https://doi.org/10.1117/12.210882
C. Rothmann, I. Bar-Am, Z. Malik, Histol. Histopathol. 13, 921–926 (1998)
M. Klein, B. Aalderink, R. Padoan, G. De Bruin, T. Steemers, Sensors8, 4476 (2008)
L. Fauch, E. Nippolainen, V. Teplov, A.A. Kamshilin, Opt. Express18, 23394 (2010)
N.A. Hagen, M.W. Kudenov, Opt. Eng. 52, 090901 (2013). https://doi.org/10.1117/1.OE.52.9.090901
J. Kerekes, J. Schott, in Hyperspectral data exploitation-theory and applications edited by Chang C.I. (Wiley, New York), (2007)
C.D. Tran, Appl. Spectrosc. Rev. 38, 133–153 (2013)
J. Call, R.A. Lodder, Application of a liquid crystal tunable filter to near-infrared spectral searches, in Proc. SETICon02 (2002)
W.J. Marinelli, C.M. Gittins, A.H. Gelb, B.D. Green, Tunable Fabry-Perot etalon-based long-wavelength infrared imaging spectroradiometer. Appl. Opt. 38, 2594 (1999)
P. Mouroulis, R.O. Green, T.G. Chrien, Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information. Appl. Opt. 39, 2210–2220 (2000)
A. Casini, F. Lotti, M. Picollo, L. Stefani, A. Aldrovandi, Fourier transform interferometric imagingspectrometry: a new tool for the study of reflectance and fluorescence of polychrome surfaces. Cons. Sci. 38, 248 (2002)
F. Vagni, Survey of hyperspectral and multispectral imaging technologies, RTO Technical Report TR-SET-065-P3, (2007), (AC/323(SET-065)TP/44 NATO)
R.P. Gupta, Tunable multi-spectral imaging system technology for airborne applications (Springer-Verlag GmbH Germany), (2017), https://doi.org/10.1007/978-3-662-05283-9
D.W. Coulter, P.L. Hauff, W.L. Kerby, Airborne Hyperspectral Remote Sensing, Advances in Airborne Geophysics, in Proc. Exploration 07: Fifth Decennial International Conference on Mineral Exploration, edited by Milkereit B., 375-386 (2007)
T. Lillesand, R.W. Kiefer, J. Chipman, Remote sensing and image interpretation, (John Wiley and Sons), 736p (2015)
EN ISO 9488, Solar energy—vocabulary, (Brussels: European Committee for Standardization (CEN)), (1999)
A. Fernandez-Garcia, F. Sutter, M. Montecchi, F. Sallaberry, A. Heimsath, C. Heras, E. Le Baron, A. Soum-Glaude, Parameters and method to evaluate the solar reflectance properties of reflector materials for concentrating solar power technology, (SolarPACES Guidelines, Official Reflectance Guideline Version 3.0), (2018)
Commission Internationale de l’éclairage (CIE), Colorimetry, (3rd Edition, CIE Publication 15), (2004)
ISO/CIE, Colorimetry—Part 3: CIE tristimulus values, 11664-3, (The International Organization for Standardization), (2019)
E.I. Stearns, R.E. Stearns, An example of a method for correcting radiance data for bandpass error. Color Res. Appl. 13, 257–259 (1988)
ASTM E308-01, Standard Practice for Computing the Colors of Objects by Using the CIE System, Color Res. Appl.,ICS Code Number 17.180.20 (2001), https://doi.org/10.1520/E0308-01
F. Rosi, C. Miliani, R. Braun, R. Harig, D. Sali, B.G. Brunetti, A. Sgamellotti, Noninvasive Analysis of Paintings by Mid-infrared Hyperspectral Imaging,Angew. Chem. Int. Ed., 52, 5258 –5261 (2013), https://doi.org/10.1002/anie.201209929; 2013, 52,
A. Cesaratto, A. Nevin, G. Valentini, L. Brambilla, C. Castiglioni, L. Toniolo et al., A novel classification method for multispectral imaging combined with portable Raman spectroscopy for the analysis of a painting by Vincent Van Gogh. Appl. Spectrosc. 67, 1234–1241 (2013). https://doi.org/10.1366/13-07032
M. Aceto, A. Agostino, G. Fenoglio, M. Gulmini, V. Bianco, E. Pellizzi, Non invasive analysis of miniature paintings: proposal for an analytical protocol. Spectrochim. Acta A 91, 352–359 (2012)
AG. Metrohm, Metrohm Monograph 8.108.5026EN – A guide to near-infrared spectroscopic analysis of industrial manufacturing processes. CH-9101 Herisau, Switzerland, (2014)
Analytical Methods Committee AMCTB No 75, UV-visible-NIR reflectance spectrophotometry in cultural heritage: Background paper, Anal. Methods8, 5894 (2016), https://doi.org/10.1039/c6ay90112c
M. Picollo, C. Cucci, A. Casini, L. Stefani, Hyper-spectral imaging technique in the cultural heritage field: new possible scenarios. Sensors 8, 5894 (2020). https://doi.org/10.1039/c6ay90112c
H. Deborah, S. George, J.Y. Hardeberg, Pigment Mapping of the Scream (1893) Based on Hyperspectral Imaging, in Proc. Image and Signal Processing, ICISP, edited by Elmoataz A., Lezoray O., Nouboud F. and Mammass D.(Springer), pp. 248 (2014)
D. Comelli, A. Nevin, G. Valentini, I. Osticioli, E.M. Castellucci, L. Toniolo, D. Gulotta, R. Cubedu, Insights into Masolino’s wall paintings in Castiglione Olona: advanced reflectance and fluorescence imaging analysis. J. Cult. Herit. 12, 11–18 (2011). https://doi.org/10.1016/j.culher.2010.06.003
J.K. Delaney, P. Ricciardi, L. Glinsman, M. Facini, M. Thoury, M. Palmer, E.Rene de la Rie, Use of imaging spectroscopy, fiber optic reflectance spectroscopy, and X-ray fluorescence to map and identify pigments in illuminated manuscripts. Stud. Conserv. 59, 91–101 (2014). https://doi.org/10.1179/2047058412Y.0000000078
K.A. Dooley, J. Coddington, J. Kreuger, D.M. Conover, M. Loew, J.K. Delaney, Standoff chemical imaging finds evidence for Jackson Pollock’s selective use of alkyd and oil binding media in a famous ‘drip’ painting. Anal. Methods 9, 28–37 (2017)
F. Gabrieli, K. Dooley, M. Facini, J.K. Delaney, Near-UV to mid-IR reflectance imaging spectroscopy of paintings on the macroscale. Sci. Adv. 5, eaaw7794 (2019). https://doi.org/10.1126/sciadv.aaw7794
A. Dooley, S. Lomax, J.G. Zeibel, C. Miliani, P. Ricciardi, A. Hoenigswald et al., Mapping of egg yolk and animal skin glue paint binders in Early Renaissance paintings using near infrared reflectance imaging spectroscopy. Analyst138, 4838–4848 (2013). https://doi.org/10.1039/c3an00926b
S. Mosca, R. Alberti, T. Frizzi, A. Nevin, G. Valentini, D. Comelli, D. Comelli, A whole spectroscopic mapping approach for studying the spatial distribution of pigments in paintings. Appl. Phys. A Mater. Sci. Process. 122, 815 (2016). https://doi.org/10.1007/s00339-016-0345-8
S. Legrand, F. Vanmeert, G. Van der Snickt, M. Alfeld, W. De Nolf, J. Dik et al., Examination of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red spectroscopy to computed X-ray laminograph. Herit. Sci. 2, 13 (2014). https://doi.org/10.1186/2050-7445-2-13
A. Deneckere, M. De Reu, M.P. Martens, K. De Coene, B. Vekemans, L. Vincze, P. De Mayer, P. Vandenabeele, L. Moens, The use of a multi-method approach to identify the pigments in the 12th century manuscript Liber Floridus. Spectrochim. Acta A. 80, 1125–132 (2011)
M. Thoury, J.K. Delaney, E.R. De La Rie, M. Palmer, K. Morales, J. Krueger, Near-infrared luminescence of cadmium pigments: in situ identification and mapping in paintings. Appl. Spectrosc. 65(8939–951), 939–951 (2011). https://doi.org/10.1366/11-06230
A. Dooley, D.M. Conover, L.D. Glinsman, J.K. Delaney, Complementary standoff chemical imaging to map and identify artist materials in an early Italian Renaissance panel painting. Angew. Chem. 126, 13995–13999 (2014). https://doi.org/10.1002/anie.201407893
F. Daniel, A. Mounier, J. Pérez-Arantegui, C. Pardos, N. Prieto-Taboada, Vallejuelo S. De Fdez-Ortiz, K. Castro, Hyperspectral imaging applied to the analysis of Goya paintings in the Museum of Zaragoza (Spain). Microchem. J.126, 13995–13999 (2016). https://doi.org/10.1016/j.microc.2015.11.04
F. Daniel, A. Mounier, J. Pérez-Arantegui, C. Pardos, N. Prieto-Taboada, Vallejuelo S. De Fdez-Ortiz, K. Castro, Comparison between non-invasive methods used on paintings by Goya and his contemporaries: hyperspectral imaging vs. point-by-point spectroscopic analysis. Anal. Bioanal. Chem. 409, 4047–4056 (2017). https://doi.org/10.1007/s00216-017-0351-5
S. Mosca, T. Frizzi, M. Pontone, R. Alberti, L. Bombelli, V. Capogrosso, Identification of pigments in different layers of illuminated manuscripts by X-ray fluorescence mapping and Raman spectroscopy. Microchem. J. 124, 775–784 (2016). https://doi.org/10.1016/j.microc.2015.10.038
K. Janssens, G. Van Der Snickt, M. Alfeld, P. Noble, A. Van Loon, J.K. Delaney, D. Conover, J. Zeibel, J. Dik, Rembrandt’s “Saul and David”: use of multiple types of smalt evidenced by means of non-destructive imaging. Microchem. J. 126, 515–523 (2016). https://doi.org/10.1016/j.microc.2016.01.013
S.R. Amato, A. Burnstock, M. Cross, K. Janssens, F. Rosi, L. Cartechini, R. Fontana, A. Dal Fovo, M. Paolantoni, C. Grazia, A. Romani, Interpreting technical evidence from spectral imaging of paintings by douard Manet in the Courtauld Gallery. X-ray Spectrom. 48, 282–292 (2019)
N.S. Daly, M. Sullivan, L. Lee, J.K. Delaney, K. Trentelman, Odilon Redon’s noir drawings: characterization of materials and methods using noninvasive imaging and spectroscopies. Herit. Sci. 7, 1–43 (2019). https://doi.org/10.1186/s40494-019-0286-6
A. Dal Fovo, A. Mazzinghi, S. Omarini, E. Pampaloni, J. Striova, R. Fontana, Non-invasive mapping methods for pigments analysis of Roman mural paintings. J. Cult. Herit. 43, 311–318 (2020). https://doi.org/10.1016/j.culher.2019.12.00
A. Dal Fovo, J. Striova, E. Pampaloni, A. Fedele, M. Morita, D. Amaya, F. Grazzi, M. Cimò, C. Cirrincione, R. Fontana, Rubens’ painting as inspiration of a later tapestry: non-invasive analyses provide insight into artworks’ history. Microchem. J. 153, 104472 (2020). https://doi.org/10.1016/j.microc.2019.104472
N. De Manincor, G. Marchioro, E. Fiorin, M. Raffaelli, O. Salvadori, C. Daffara, Integration of multispectral visible-infrared imaging and pointwise X-ray fluorescence data for the analysis of a large canvas painting by Carpaccio. Microchem. J. 153, 104469 (2020). https://doi.org/10.1016/j.microc.2019.104469
M. Hain, J. Bartl, V. Jacko, Multispectral analysis of cultural heritage artefacts. Meas. Sci. Rev. 3, 9–12 (2003)
E. Ravaud, L. Pichon, E. Laval, V. Gonzalez, M. Eveno, T. Calligaro, Development of a versatile XRF scanner for the elemental imaging of paintworks. Appl. Phys. A 122, 17 (2016). https://doi.org/10.1007/s00339-015-9522-4
D. Thurrowgood, D. Paterson, M.D. De Jonge, R. Kirkham, S. Thurrowgood, D.L. Howard, A hidden portrait by Edgar Degas. Sci. Rep. 6, 29594 (2016). https://doi.org/10.1038/srep29594
G. Van der Snickt, A. Martins, J.K. Delaney, K. Janssens, J. Zeibel, M. Duffy, C. McGlinchey, B. Van Driel, J. Dik, Exploring a hidden painting below the surface of René Magritte’s Le Portrait. Appl. Spectrosc. 70, 57–67 (2016). https://doi.org/10.1177/0003702815617123
P.A. Favero, J. Mass, J.K. Delaney, A.R. Woll, A.M. Hull, K.A. Dooley, A.C. Finnefrock, Reflectance imaging spectroscopy and synchrotron radiation X-ray fluorescencemapping used in a technical study of The Blue Room by Pablo Picasso. Herit. Sci. 5, 13 (2017). https://doi.org/10.1186/s40494-017-0126-5
E. Herens, C. Defeyt, P. Walter, D. Strivay, Discovery of a woman portrait behind La Violoniste by Kees van Dongen through hyperspectral imaging. Herit. Sci. 5, 14 (2017). https://doi.org/10.1186/s40494-017-0127-4
E. Pouyet, S. Devine, T. Grafakos, R. Kieckhefer, J. Salvant, L. Smieska, A. Woll, A. Katsaggelos, O. Cossairt, M. Walton, Revealing the biography of a hidden medievalmanuscript using synchrotron and conventional imaging techniques. Anal. Chim. Acta 982, 20–30 (2017). https://doi.org/10.1016/j.aca.2017.06.016
L. De Vaguerie, S. Rochut, M. Alfeld, P. Walter, S. Astier, V. Gontero, F. Boulc’h, XRF and reflectance hyperspectral imaging on a 15th century illuminated manuscript: combining imaging and quantitative analysis to understand the artist’s technique, Herit. Sci, 6, 11 (2018) https://doi.org/10.1186/s40494-018-0177-2
A. Harth, G. Van Der Snickt, O. Schalm, K. Janssens, G. Blanckaert, The young Van Dyck’s fingerprint: a technical approach to assess the authenticity of a disputed painting. Herit. Sci 5, 22 (2017). https://doi.org/10.1186/s40494-017-0136-3
L. Pronti, M. Romani, G. Verona-Rinati, O. Tarquini, F. Colao, M. Colapietro, A. Pifferi, M. Cestelli-Guidi, M. Marinelli, Post-processing of VIS, NIR, and SWIR multispectral images of paintings. New discovery on the the drunkenness of Noah, Painted by Andrea Sacchi, Stored at Palazzo Chigi (Ariccia, Rome). Heritage2, 2275–2286 (2019). https://doi.org/10.3390/heritage2030139
G.J. Tserevelakis, I. Vrouvaki, P. Siozos, K. Melessanaki, K. Hatzigiannakis, C. Fotakis, G. Zacharakis, Photoacoustic imaging reveals hidden underdrawings in paintings. Sci. Rep. 7, 747 (2017). https://doi.org/10.1038/s41598-017-00873-7
A. Dal Fovo, G.J. Tserevelakis, A. Papanikolaou, G. Zacharakis, R. Fontana, Combined photoacoustic imaging to delineate the internal structure of paintings. Opt. Lett. 44, 919–922 (2019)
R. Fontana, M.C. Gambino, M. Greco, L. Marras, M. Materazzi, E. Pampaloni, A. Pelagotti, L. Pezzati, P. Poggi, C. Sanapo, 2D and 3D optical diagnostic techniques applied to Madonna dei Fusi by Leonardo da Vinci, in Proc. SPIE 5857, Optics for Arts, Architecture, and Archaeology, edited by Salimbeni R. and Pezzati L. (The International Society for Optical Engineering), pp. 58570L (2005), https://doi.org/10.1117/12.612535
R. Bellucci, P.L. Carcagni, A.D. Patrib, R. Fontana, C. Frosinini, M.C. Gambino, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, Integration of image data from 2D and 3D optical techniques for painting conservation applications. Imaging Sci. J. 55, 80–89 (2007)
H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, D. Saunders,Optical coherence tomography for art conservation and archaeology, in Proc. SPIE 6618, Optics for Arts, Architecture, and Archaeology, edited by Salimbeni R. and Pezzati L. (The International Society for Optical Engineering), p. 661805 (2007), https://doi.org/10.1117/12.726032
P. Targowski, M. Iwanicka, Optical coherence tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects–a review. Appl. Phys. A 106, 2265–277 (2012)
H. Liang, R. Lange, H. Howard, J. Spooner, Non-invasive investigations of a wall painting using optical coherence tomography and hyperspectral imaging, in Proc. SPIE 8084, Optics for Arts, Architecture, and Archaeology III, edited by Fotakis C., Pezzati L. and Salimbeni R. (The International Society for Optical Engineering), p. 8084F (2011), https://doi.org/10.1117/12.890088
H. Liang, R. Lange, B. Peric, M. Spring, Optimum spectral window for imaging of art with optical coherence tomography. Appl. Phys. B 106, 4589–602 (2013)
H. Liang, A. Lucian, R. Lange, C.S. Cheung, B. Su, Remote spectral imaging with simultaneous extraction of 3D topography for historical wall paintings. ISPRS J. Photogramm. 95, 13–22 (2014). https://doi.org/10.1016/j.isprsjprs.2014.05.011
R. Fontana, A. Dal Fovo, J. Striova, L. Pezzati, E. Pampaloni, M. Raffaelli, M. Barucci, Application of non-invasive optical monitoring methodologies to follow and record painting cleaning processes. Appl. Phys. A 121, 957–966 (2015)
J. Striova, R. Fontana, M. Barucci, A. Felici, E. Marconi, E. Pampaloni, M. Raffaelli, C. Riminesi, Optical devices provide unprecedented insights into the laser cleaning of calcium oxalate layers. Microchem. J. 124, 331–337 (2016)
P. Targowski, M. Iwanicka, M. Sylwestrzak, C. Frosinini, J. Striova, R. Fontana, Using optical coherence tomography to reveal the hidden history of the Landsdowne Virgin of the Yarnwinder by Leonardo da Vinci and Studio. Angew. Chem.57, 7396–7400 (2018)
P. Klausmeyer, M. Cushman, I. Dobrev, M. Khaleghi, E.J. Harrington, X. Chen, C. Furlong, Quantifying and mapping induced strain in canvas paintings using laser shearography, in The Noninvasive Analysis of Painted Surfaces: Scientific Impact and Conservation Practice, edited by Nevin A. and Doherty T. (Smithsonian Contribution to Museum Conservation), pp. 1–3 (2016)
G. Palma, M. Corsini, P. Cignoni, R. Scopigno, M. Mudge, Dynamic shading enhancement for reflectance transformation imaging. J. Comput. Cult. Heritage3, 1–20 (2010)
D. Francis, R.P. Tatam, R.M. Groves, Shearography technology and applications: a review. Meas. Sci. Technol. 21, 102001 (2010)
M. Alfeld, J.A.C. Broekaert, Mobile depth profiling and sub-surface imaging techniques for historical paintings—a review. Spectrochim. Acta B 88, 211–230 (2013). https://doi.org/10.1016/j.sab.2013.07.009
K. Janssens, J. Dik, M. Cotte, J. Susini, Photon-based techniques for nondestructive subsurface analysis of painted cultural heritage artifacts. Acc. Chem. Res. 43, 814–825 (2010)
J. Tasseva, A. Taschin, P. Bartolini, J. Striova, R. Fontana, R. Torre, Thin layered drawing media probed by THz time-domain spectroscopy. Analyst 142, 42–47 (2017)
K. Fukunaga, Y. Ogawa, S.I. Hayashi, I. Hosako, Terahertz spectroscopy for art conservation. IEICE Electron. Express 4, 258–263 (2007)
J.-M. Manceau, A. Nevin, C. Fotakis, S. Tzortzakis, Terahertz time domain spectroscopy for the analysis of cultural heritage related materials. Appl. Phys. B 90, 365–368 (2008)
A.J.L. Adam, P.C.M. Planken, S. Meloni, J. Dik, TeraHertz imaging of hidden paint layers on canvas. Opt. Express 17, 3407–3416 (2009)
J. Doria, G.P. Gallerano, E. Giovenale, A. Casini, C. Cucci, M. Picollo, M. Poggesi, L. Stefani, K. Fukunaga, M. Tamassia, Vis-NIR hyperspectral and terahertz imaging investigations on a fresco painting on “Tavella” by Alessandro Gherardini. J. Infrared, Millimeter Terahertz Waves 38, 390–402 (2017). https://doi.org/10.1007/s10762-017-0357-2
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Striova, J., Dal Fovo, A. & Fontana, R. Reflectance imaging spectroscopy in heritage science. Riv. Nuovo Cim. 43, 515–566 (2020). https://doi.org/10.1007/s40766-020-00011-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40766-020-00011-6