Skip to main content

Reflectance imaging spectroscopy in heritage science

  • Review Paper
  • Published:
La Rivista del Nuovo Cimento Aims and scope

Abstract

The present paper focuses on the reflectance spectral imaging of painted surfaces in the visible-near infrared spectral region (400–2500 nm). Other spectral ranges and methods are mentioned, to contextualize the spectral investigation of works of art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

\(\mu \)XRF:

Micro-X-Ray Fluorescence

2D:

Two-dimensional

3D:

Three-dimensional

ANN:

Artificial neural network

APD:

Avalanche photodiode

B :

Blue

BR-RIS :

Broad spectral range reflectance imaging spectroscopy

CCD :

Charge-coupled device

EDS :

Energy dispersive spectroscopy

EMCCD :

Electron-multiplying CCD

FORS :

Fiber optics reflectance spectroscopy

FOV :

Field of view

FPA :

Focal plane array

FT:

Fourier transform

FT-IR :

Fourier transform infrared

FWHM:

Full width at half maximum

G:

Green

HS :

Hyperspectral

HS-RIS :

Hyperspectral reflectance imaging spectroscopy

HSI:

Hyperspectral imaging

ICCD:

intensified CCD

InGaAs :

Indium gallium arsenide

IRR:

Infrared reflectography

IS:

Imaging spectroscopy

LWIR:

Longwave infrared

MA-XRF :

Macro X-Ray fluorescence

MA-XRF-SR:

Synchrotron-based macro X-ray fluorescence

MB :

Multiband

MCD:

Multi-channel detector

MCT:

Mercury cadmium telluride

MNF:

Minimum noise factor transform

MS :

Multispectral

MS-RIS:

Multispectral reflectance imaging spectroscopy

MSI :

Multispectral imaging

MWIR :

Midwave infrared

NG :

National Gallery

NIR:

Near infrared

OCT:

Optical coherence tomography

OPD:

Optical path difference

PAI:

Photoacoustic imaging

PCA:

Principle component analysis

PD :

Photodiode

PLM:

Polarized light microscopy

PMT:

Photomultiplier tube

R :

Red

RF :

Radio frequency

RIS:

Reflectance imaging spectroscopy

RTI:

Reflectance transformation imaging

SCD:

Single-channel detector

SAM:

Spectral angle mapper

SCM:

Spectral correlation mapping

sCMOS:

Scientific complementary metal–oxide semiconductor

SEM:

Scanning electron microscopy

SMACC:

Sequential maximum-angle convex cone

SNR:

Signal to noise ratio

SR-XRF:

Synchrotron radiation X-Ray fluorescence

SWIR:

Shortwave infrared

THz-TDS:

Terahertz time-domain spectroscopy

US:

Ultrasound

UVVISNIR:

Ultraviolet, visible and near-infrared

VIS:

Visible

XFM:

X-Ray fluorescence microscopy

XRF:

X-Ray fluorescence

XRR:

X-ray radiography

References

  1. A.F. Goetz, G. Vane, J.E. Solomon, B.N. Rock, Science 4704, 1147–53 (1985)

    ADS  Google Scholar 

  2. G.J. Tserevelakis, I. Vrouvaki, P. Siozos, K. Melessanaki, K. Hatzigiannakis, C. Fotakis et al., Sci. Rep. 7, 747 (2017). https://doi.org/10.1038/s41598-017-00873-7

    Article  ADS  Google Scholar 

  3. R. N. Clark, Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, in VOLUME 3 Remote Sensing for the Earth Sciences, edited by A.N. Rencz (John Wiley and Sons, New York), pp. 3–58 (1999)

  4. D.W. Ball, Spectroscopy 10, 16–18 (1995)

    Google Scholar 

  5. C. Fischer, I. Kakoulli, Stud. Conserv. 51, 3–16 (2006)

    Google Scholar 

  6. P. Ricciardi, A. Pallipurath, K. Rose, Anal. Methods 5, 3819 (2013)

    Google Scholar 

  7. C. Cucci, A. Casini, Hyperspectral imaging for artworks investigation, in Data Handl. Sci. Techn., Hyperspectral Imaging, edited by J.M. Amigo (2020 Elsevier) 32, pp. 583–604

  8. M. Born, E. Wolf, Principles of optics: electromagnetic theory of propagation, interference, and diffraction of light (Cambridge University Press, Cambridge, 1999). https://doi.org/10.1017/CBO9781139644181

    Book  MATH  Google Scholar 

  9. G. ElMasry, D. Sun, Chapter 1 - Principles of Hyperspectral Imaging Technology, in Hyperspectral Imaging for Food Quality Analysis and Control, edited by Da-Wen Sun (Elsevier), pp. 3–43 (2010). https://doi.org/10.1016/C2009-0-01853-4

  10. G.R. Hunt, Geophysics 42, 501–513 (1977)

    ADS  Google Scholar 

  11. R.N. Clark, T.V.V. King, M. Klejwa, G.A. Swayze, N.J. Vergo, Geophys Res. 95, 653–680 (1990)

    Google Scholar 

  12. C.M. Pieters, W.E. Englert, Remote geochemical analysis: elemental and mineralogical composition (Cambridge University Press, New York, 1993)

    Google Scholar 

  13. R.N. Clark, G.A. Swayze, Mapping minerals, amorphous materials environmental materials, vegetation, water, ice and snow, and other materials: The USGS Tricorder algorithm, in Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, edited by Green R.O. (Jet Propul. Lab., Pasadena, Calif.) pp. 39–40 (1995)

  14. A.N. Rencz, Manual of remote sensing, vol. 707 (Wiley, New York, 1999)

    Google Scholar 

  15. G.K. Moore, Hydrolog. Sci. Bull. 24, 477–485 (1979)

    Google Scholar 

  16. W.G. Rees, Physical principles of remote sensing (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  17. J.R. Jensen, remote sensing of the environment: an earth resource perspective, (Pearson Education Singapore Pte. Ltd., Indian Branch: New Delhi) (2004)

  18. G. Vane, A.F.H. Goetz, Rem. Sens. Environ. 24, 1–29 (1988)

    ADS  Google Scholar 

  19. G. Vane, A.F.H. Goetz, Rem. Sens. Environ. 44, 117–126 (1993)

    ADS  Google Scholar 

  20. A.F.H. Goetz, Rem. Sens. Environ. 113, S5–S16 (2009)

    ADS  Google Scholar 

  21. M.E. Schaepman, S.L. Ustin, A.J. Plaza, T.H. Painter, J. Verrelst, S. Liang, Rem. Sens. Environ. 113, S123–S137 (2009)

    ADS  Google Scholar 

  22. P.N. Slater, Rem. Sens. Environ. 17, 85–102 (1985)

    ADS  Google Scholar 

  23. https://modis.gsfc.nasa.gov/. Accessed 18 May 2020

  24. H.F. Grahn, P. Geladi, Techniques and applications of hyperspectral image analysis, (Wiley, The Atrium, Southern Gate, Chichester) (2007). https://doi.org/10.1002/9780470010884

  25. B. Park, K.C. Lawrence, W.R. Windham, D.P. Smith, P.W. Feldner, Hyperspectral imaging for food processing automation, in Proc. SPIE 4816, Imaging Spectrometry VIII, edited by Shen S.S. (The International Society for Optical Engineering), pp. 308–316 (2002)

  26. J. Burger, P. Geladi, The Analyst 131, 1152–1160 (2006)

    ADS  Google Scholar 

  27. C. Balas, IEEE Trans. Biomed. Eng. 48, 96–104 (2001)

    Google Scholar 

  28. P. Geladi, H. F. Grahn, Multivariate and Hyperspectral Image Analysis, in Encyclopedia of Analytical Chemistry, edited by Meyers R. A. (John Wiley and Sons Ltd), pp. 14349–14374 (2008)

  29. E. Herrala, T. Hyvarinen, O. Voutilainen, J. Lammasniemi, Sens. Actuat. A Phys. 61, 335–338 (1997)

    Google Scholar 

  30. J. Xing, C. Bravo, T. Pál, H. Jancsók, J. Ramon, J.D. Baerdemaeker, Biosyst. Eng. 90, 27–36 (2005)

    Google Scholar 

  31. P.W.T. Yuen, M. Richardson, Imaging Sci. J. 58, 241–253 (2010). https://doi.org/10.1179/174313110X12771950995716

    Article  Google Scholar 

  32. G.M. Miskelly, J.H. Wagner, Foren. Sci. Int. 155, 112–118 (2005)

    Google Scholar 

  33. G. Payne, C. Wallace, B. Reedy, C. Lennard, R. Schuler, D. Exline, C. Roux, Talanta 67, 334–344 (2005)

    Google Scholar 

  34. C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, G.A. Themelis, J. Cult. Herit. 4, 330–227 (2003). https://doi.org/10.1016/S1296-2074(02)01216-5

    Article  Google Scholar 

  35. A. Casini, M. Bacci, C. Cucci, F. Lotti, S. Porcinai, M. Picollo, B. Radicati, M. Poggesi, L. Stefani, Fiber optic reflectance spectroscopy and hyper-spectral image spectroscopy: two integrated techniques for the study of the Madonna dei Fusi, in Proc. SPIE 5857, Optical Methods for Arts and Archaeology, edited by Salimbeni R. and Pezzati L. (The International Society for Optical Engineering), (2005), https://doi.org/10.1117/12.611500

  36. C. Cucci, A. Casini, M. Picollo, M. Poggesi, L. Stefani, Open issues in hyperspectral imaging for diagnostics on paintings: when high-spectral and spatial resolution turns into data redundancy, in Proc. SPIE 8084, O3A: Optics for Arts, Architecture, and Archaeology III, 808408, edited by Pezzati L. and Salimbeni R. (The International Society for Optical Engineering), (2011), https://doi.org/10.1117/12.889460

  37. C. Cucci, J.K. Delaney, M. Picollo, Acc. Chem. Res. 49, 2070–2079 (2016). https://doi.org/10.1021/acs.accounts.6b00048

    Article  Google Scholar 

  38. J.K. Delaney, J.G. Zeibel, M. Thoury, R. Littleton, M. Palmer, K.M. Morales, A. Hoenigswald, Appl. Spectrosc. 64, 584–594 (2010). https://doi.org/10.1366/000370210791414443

    Article  ADS  Google Scholar 

  39. J.R.J. Van De Asperen Boer, Appl. Opt. 7, 1711–1714 (1968). https://doi.org/10.1364/AO.7.001711

    Article  ADS  Google Scholar 

  40. E. Ciliberto, Modern Analytical Methods in Art and Archaeology, inAnalytical Methods in Art and Archaeology, edited by Ciliberto E. and Spoto G. (Wiley, New York), (2000)

  41. A. Burmester, J. Cupitt, H. Derrien, N. Dessipris, A. Hamber, K. Martinez, M. Müller, D. Saunders, The examination of paintings by digital image analysis, in 3rd International Conference on Non Destructive Testing, Microanalytical Methods and Environmental Evaluation for Study and Conservation of Works of Art Rome, edited by Marabelli M. and Santopadre P. (The International Society for Optical Engineering), pp. 199–214 (1992)

  42. K. Martinez, J. Cupitt, D. Saunders, High resolution colorimetric imaging of paintings, in Proc SPIE 1901, Cameras, Scanners, and Image Acquisition Systems,edited by Marz H. and Nielsen R.L. (The International Society for Optical Engineering), pp. 25–36 (1993), https://doi.org/10.1117/12.144795

  43. S. Baronti, A. Casini, F. Lotti, S. Porcinai, Chemom. Intell. Lab. Syst. 2, 103–114 (1997). https://doi.org/10.1016/S0169-7439(97)00047-6

    Article  Google Scholar 

  44. S. Baronti, A. Casini, F. Lotti, S. Porcinai, Appl. Opt. 8, 1299–1309 (1998). https://doi.org/10.1364/AO.37.001299

    Article  ADS  Google Scholar 

  45. H. Maitre, F. Schmitt, J.-P. Crettez, Y. Wu, J.Y. Hardeberg, D. Saunders, Spectrophotometric image analysis of fine art paintings, in Proc IST and SID Fourth Colour Imaging Conference edited by Marz H. and Nielsen R.L. (Society for Imaging Science and Technology), pp. 50–53 (1996), https://doi.org/10.1117/12.144795

  46. A. Casini, F. Lotti, M. Picollo, L. Stefani, E. Buzzegoli, Stud. Conserv. 44, 39–48 (1999). https://doi.org/10.1007/s11045-016-0429-9

    Article  Google Scholar 

  47. D. Saunders, J. Cupitt, Natl. Gallery Tech. Bull. 14, 72–85 (1993)

    Google Scholar 

  48. H. Derrien, Inf. Serv. Use 13(4), 357–369 (1993)

    Google Scholar 

  49. J. Cupitt, K. Martinez, D. Saunders, Comput. Hist. 6, 1–20 (1996)

    Google Scholar 

  50. K. Martinez, J. Cupitt, D. Saunders, R. Pillay, Proc. IEEE 90(1), 28–41 (2002). https://doi.org/10.1109/5.982403

    Article  Google Scholar 

  51. H. Liang, D. Saunders, J. Cupitt, JIST 49(6), 551–562 (2005)

    Google Scholar 

  52. C. Lahanier, G. Alquié, P. Cotte, C. Christofides, C. De Deyne, R. Pillay, D. Saunders, F. Schmitt, CRISATEL: High definition spectral digital imaging of paintings with simulation of varnish removal, in Proc. 3rd triennal meeting ICOM-CC, Rio de Janeiro, 22–27 September 2002 (London: James and James), edited by Vontobel R., pp. 295–300 (2002)

  53. A. Ribés, H. Brettel, F. Schmitt, H. Liang, D. Saunders, Color and multispectral imaging with the CRISATEL multispectral system, in Proc PICS, the digital photography conference: processing images, image quality, capturing images, systems (NY: society for imaging science and technology), edited by Vontobel R., pp. 215–219 (2003)

  54. P. Cotte, D. Dupraz, Spectral imaging of Leonardo Da Vinci’s Mona Lisa: An authentic smile at 1523 dpi with additional infrared data in Proc. IST PICS Conference Archiving 06 (Society for Imaging Science and Technology), pp. 228–235(8), (2006)

  55. A. Ribés, R. Pillay, F. Schmitt, C. Lahanier, IEEE Signal Process. Mag.25(4), 14–26 (2008)

    Google Scholar 

  56. F. Imai, M. Rosen, R. Berns, Multispectral imaging of Van Gogh’s self-portrait at the National Gallery of Art, Washington, D.C. in Proc. IST PICS Conference Montreal, Quebec, Canada (Society for Imaging Science and Technology), pp. 185–189 (2001)

  57. M. Bacci, A. Casini, C. Cucci, A. Muzzi, S. Porcinai, J. Cult. Herit.6, 329–36 (2005). https://doi.org/10.1016/j.culher.2005.07.002

    Article  Google Scholar 

  58. P. Carcagnì, Patria, A. Della, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, Opt. Lasers Eng. 45, 360–367 (2007)

    Google Scholar 

  59. R. Fontana, D. Bencini, P. Carcagnì, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, Multi-spectral IR reflectography, in Proc. SPIE 6618, Optical Methods for Arts and Archaeology, edited by Salimbeni R. and Pezzati L. (The International Society for Optical Engineering), pp. 661813–15 (2007)

  60. C. Bonifazzi, P. Carcagnì, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, D. Bencini, J. Opt. A Pure Appl. Opt. 10(6), 064011 (2008)

    ADS  Google Scholar 

  61. C. Daffara, E. Pampaloni, L. Pezzati, M. Barucci, R. Fontana, Acc. Chem. Res. 43(6), 847–856 (2010). https://doi.org/10.1021/ar900268t

    Article  Google Scholar 

  62. R. Fontana, M. Barucci, P. Carcagn, C. Daffara, E. Pampaloni, L. Pezzati, Autofocus laser system for multi-NIR scanning imaging of painting surfaces, in Proc. SPIE 8084, Optics for Arts, Architecture, and Archaeology III, edited by Pezzati L. and Salimbeni R. (The International Society for Optical Engineering), pp. 808405 (2011)

  63. C. Daffara, R. Fontana, Microsc. Microanal 17, 691–695 (2011)

    ADS  Google Scholar 

  64. R. Fontana, M. Barucci, E. Pampaloni, J. Striova, L. Pezzati, From Leonardo to Raffaello: insights by Vis-IR reflectography, in Acta Artis Academica, Interpretation of Fine Art’s analysis in diverse contexts, edited by D. Hradil, J. Hradilova (Academy of Fine Arts, Prague), pp. 15–26 (2014)

  65. R. Fontana, J. Striova, M. Barucci, E. Pampaloni, M. Raffaelli, L. Pezzati, P. Mariotti, Limewashed mural paintings as seen by VIS-IR reflectography, inProc. SPIE 9527, Optics for Arts, Architecture, and Archaeology V, edited by Pezzati L. and Targowski P. (The International Society for Optical Engineering), pp. 9527 (2015)

  66. J. Striova, C. Ruberto, M. Barucci, J. Blažek, D. Kunzelman, A. Dal Fovo, E. Pampaloni, R. Fontana, Angew. Chem. 57, 1–6 (2018). https://doi.org/10.1002/anie.201800624

    Article  Google Scholar 

  67. A. Pelagotti, A. Del Mastio, A. De Rosa, A. Piva, IEEE Signal Process. Mag. 25, 27–36 (2008)

    ADS  Google Scholar 

  68. J.K. Delaney, E. Walmsley, B. H. Berrie, C.F. Fletcher, Multispectral imaging of paintings in the infrared to detect and to map blue pigments, in Sackler NAS Colloquium, Scientific Examination of art: Modern Techniques in Conservation and Analysis, edited by Pezzati L. and Targowski P. (The National Academies press, Washington, D.C.), pp. 120–136 (2005)

  69. J.R. Mansfield, M. Attas, C. Majzels, E. Cloutis, C. Collins, H.H. Mantsch, Vib. Spectrosc. 28(1), 59–66 (2002)

    Google Scholar 

  70. S. Kogou, A. Lucian, S. Bellesia, L. Burgio, K. Bailey, C. Brooks et al., Appl. Phys. A 15, (2015). https://doi.org/10.1007/s00339-015-9425-4

  71. M. Bacci, F. Baldini, R. Carla, R. Linari, Appl. Spectrosc. 45, 26–31 (1991)

    ADS  Google Scholar 

  72. M. Attas, E. Cloutis, C. Collins, D. Goltz, C. Majzels, J.R. Mansfield, H.H. Mantsch, J. Cult. Herit. 4, 127–136 (2003)

    Google Scholar 

  73. J.R. Mansfield, M.G. Sowa, C. Majzels, C. Collins, E. Cloutis, H.H. Mantsch, Vib. Spectrosc. 19, 33–45 (1999)

    Google Scholar 

  74. M. Picollo, M. Bacci, A. Casini, F. Lotti, S. Porciani, B. Radicati, L. Stefani, Fiber Optics Reflectance Spectroscopy: a non-destructive technique for the analysis of works of art, in Optical sensors and microsystems, edited by Martellucci S., Chester A.N. and Mignani A.G (Springer, Boston, MA), pp. 259–265 (2002)

  75. M. Leona, J. Winter, Stud. Conserv. 46, 153–162 (2001)

    Google Scholar 

  76. M. Leona, F. Casadio, M. Bacci, M.J. Picollo, Am. Inst. Conservat.43, 39–54 (2004)

    Google Scholar 

  77. G. Dupuis, M. Elias, L. Simonot, Appl. Spectrosc. 56, 1329–36 (2002)

    ADS  Google Scholar 

  78. C. Cucci, G. Bartolozzi, M. De Vita, V. Marchiafava, M. Picollo, F. Casadio, Appl. Spectrosc. 70, 186–96 (2016). https://doi.org/10.1177/0003702815615346

    Article  ADS  Google Scholar 

  79. M. Bacci, M. Picollo, G. Trumpy, M. Tsukada, J. Kunzelman, Am. Inst. Conservat. 46, 27–37 (2007). https://doi.org/10.1179/019713607806112413

    Article  Google Scholar 

  80. M. Bacci, A. Casini, C. Cucci, M. Piccolo, B. Radicati, M. Vervat, J. Cult. Herit. 4, 329–36 (2003). https://doi.org/10.1016/j.culher.2003.09.003

    Article  Google Scholar 

  81. http://fors.ifac.cnr.it/. Accessed 18 May 2020

  82. M. Kubik, Hyperspectral imaging: a new technique for the non-invasive study of artworks, in Physical Techniques in the Study of Art, Archaeology and Cultural Heritage, edited by Creagh D. and Bradley D. (Elsevier Science, The Netherlands), pp. 199–271 (2007)

  83. J.K. Delaney, J.G. Zeibel, M. Thoury, R. Littleton, K.M. Morales, M. Palmer et al., Visible and infrared reflectance imaging spectroscopy of paintings: pigment mapping and improved infrared reflectography, in Proc. SPIE 7391, Optics for Arts, Architecture, and Archaeology II, edited by Pezzati L. and Salimbeni R. (The International Society for Optical Engineering), pp. 739103 (2009), https://doi.org/10.1117/12.82749

  84. L.W. MacDonald, T. Vitorino, M. Picollo, R. Pillay, M. Obarzanowski, J. Sobczyk, S. Nascimento, J. Linhares, Herit. Sci.,5, https://doi.org/10.1186/s40494-017-0154-1, (2017)

  85. M. Kubik, Hyperspectral image spectroscopy: a 2D approach to the investigation of polychrome surfaces, in Proc. Conserv. Sci., edited by Townsend J., Toniolo L. and Capitelli F. (Archetype publications), pp. 10 (2007)

  86. C. Cucci, A. Casini, M. Picollo, L. Stefani, Extending HyperSpectral Imaging from Vis to NIR spectral regions: a novel scanner for the indepth analysis of polychrome surfaces, in Proc SPIE 8790, Optics for Arts, Architecture, and Archaeology IV, edited by Pezzati L. and Targowski P. (The International Society for Optical Engineering), (2015)

  87. G. Antonioli, F. Fermi, C. Oleari, R. Riverberi, Spectrophotometric scanner for imaging of paintings and other works of art, in Proc. CGIV 2nd European Conf. on Color in Graphics, Imaging, and Vision, (Society for Imaging Science and Technology, Springfield), pp. 219–224 (2004)

  88. C. Balas, D. Pelecoudas, International Patent App., Patent No.: US 7,042,567 B2, PCT/GR00/00039 (2006)

  89. O. Theodoropoulou, G. Tsairis, Non-destructive analysis of two post-Byzantine icons by use of the multi spectral imaging system (MU.S.I.S. 2007, in Optics and Lasers in Biomedicine and Culture, edited Fotakis C., Papazoglou T.G. and Kalpouzos C. (Springer-Verlag Berlin Heidelberg), (2000)

  90. H. Liang, K. Keita, T. Vajzovic, PRISMS: a portable multispectral imaging system for remote in situ examination of wall paintings, in Proc. SPIE 661815, O3A: Optics for Arts, Architecture, and Archaeology, edited by Salimbeni R. and Pezzati L. (The International Society for Optical Engineering), (2007)

  91. H. Liang, Appl. Phys. A 106, 309–323 (2012). https://doi.org/10.1007/s00339-011-6689-1

    Article  ADS  Google Scholar 

  92. J.K. Delaney, K.A. Dooley, R. Radpour, I. Kakoulli, Sci. Rep. 7, 115509 (2017)

    Google Scholar 

  93. J.K. Delaney, D.M. Conover, L. Glinsman, K. Janssens, M. Loew, Herit. Sci. 6, (2018). https://doi.org/10.1186/s40494-018-0197-y

  94. C. Cucci, A. Casini, L. Stefani, M. Picollo, J. Jussila, Bridging research with innovative products: a compact hyperspectral camera for investigating artworks: a feasibility study, in Proc. SPIE 10331, O3A: Optics for Arts, Architecture, and Archaeology VI, edited by Pezzati L. and Targowski P. (The International Society for Optical Engineering), 1–13 (2017)

  95. Z. Wang, D. Lu, D. Zhang, M. Sun, Y. Zhou, Multidim. Syst. Sign. Process 27, 1031–1044 (2016). https://doi.org/10.1007/s11045-016-0429-9

    Article  Google Scholar 

  96. S. Kogou, A. Lucian, S. Bellesia, L. Burgio, K. Bailey, C. Brooks et al., Appl. Phys. A 15, (2015). https://doi.org/10.1007/s00339-015-9425-4

  97. S. Kogou, S. Neate, C. Coveney, A. Miles, D. Boocock, L. Burgio et al., Herit. Sci. 4, (2016). https://doi.org/10.1186/s40494-016-0098-x

  98. A. Polak, T. Kelman, P. Murray, S. Marshall, D.J. Stothard, N. Eastaugh, F. Eastaugh, J. Cult. Herit. 26, 1–11 (2017). https://doi.org/10.1016/j.culher.2017.01.013

    Article  Google Scholar 

  99. J. Blažek, J. Striova, R. Fontana, B. Zitova, Digit. Signal Process.60, 140–151 (2017). https://doi.org/10.1016/j.dsp.2016.09.007

    Article  Google Scholar 

  100. P. Ricciardi, J.K. Delaney, M. Facini, L. Glinsman, P J. Am. Inst. Conservat. 52, 13–29 (2013). https://doi.org/10.1179/0197136012Z.0000000004

    Article  Google Scholar 

  101. G. Maino, M. Monti, Color Management and Virtual Restoration of Artworks, in Color Image and Video Enhancement, edited by Celebi E., Lecca M. and Smolka B. (Springer), pp. 183–231 (2015)

  102. M. Monti, G. Maino, Image Processing and a Virtual Restoration Hypothesis for Mosaics and Their Cartoons, in Image Analysis and Processing – ICIAP, edited by Maino G. and Foresti G.L. (Springer), (2011)

  103. D. Riccio, S. Caggiano, M. De Marsico, R. Distasi, M. Nappi, Mosaic+: tools to assist virtual restorations, in The 21st International Conference on Distributed Multimedia Systems, edited by Maino G. and Foresti G.L. (Springer), pp. 284–291 (2015), https://doi.org/10.18293/DMS2015-049

  104. L. Butler, S. Kogou, Y. Li, C.S. Cheung, H. Liang, A.T. Gallop, P. Garside, C. Duffy, Machine learning analysis of illuminated Southeast Asian manuscripts using complementary noninvasive imaging techniques, in Proc. SPIE 11058, O3A: Optics for Arts, Architecture, and Archaeology VII, 110581M, edited by Liang H., Groves R. and Targowski P. (The International Society for Optical Engineering), (2019), https://doi.org/10.1117/12.25275760

  105. D.M. Conover, J.K. Delaney, M.H. Loew, Appl. Phys. A 119, 1567–157 (2015). https://doi.org/10.1007/s00339-015-9140-1

    Article  ADS  Google Scholar 

  106. F. Micheletti, L. Stefani, C. Cucci, M. Picollo, CNR Retrieval of Images from Hyper-Spectral Data through Interactive Network Access (CRISTINA), in Proceedings of Electronic Imaging and the Visual Arts EVA, edited by V. Cappellini (Firenze University Press, Florence), 140–145 (2013)

  107. E. Bertin, R. Pillay, C. Marmo, Astron. Comput. 10, 43–53 (2015). https://doi.org/10.1016/j.ascom.2014.12.006

    Article  ADS  Google Scholar 

  108. M. Eichenholz, N. Barnett, Y. Juang, D. Fish, S. Spano, E. Lindsley, D.L. Farkas, Real-time megapixel multispectral bioimaging, in Proc. SPIE 7568, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VIII, edited by Farkas D.L., Nicolau D.V. and Leif R.C. (The International Society for Optical Engineering), (2010), https://doi.org/10.1117/12.842563

  109. J. Olson, R. Jungquist, Z. Ninkov, Tunable multi-spectral imaging system technology for airborne applications, in Proc. SPIE 2480, Imaging Spectrometry, edited by Descour M.R., Mooney J.M., Perry D.L. and Illing L.R. (The International Society for Optical Engineering), (1995), https://doi.org/10.1117/12.210882

  110. C. Rothmann, I. Bar-Am, Z. Malik, Histol. Histopathol. 13, 921–926 (1998)

    Google Scholar 

  111. M. Klein, B. Aalderink, R. Padoan, G. De Bruin, T. Steemers, Sensors8, 4476 (2008)

    Google Scholar 

  112. L. Fauch, E. Nippolainen, V. Teplov, A.A. Kamshilin, Opt. Express18, 23394 (2010)

    ADS  Google Scholar 

  113. N.A. Hagen, M.W. Kudenov, Opt. Eng. 52, 090901 (2013). https://doi.org/10.1117/1.OE.52.9.090901

    Article  ADS  Google Scholar 

  114. J. Kerekes, J. Schott, in Hyperspectral data exploitation-theory and applications edited by Chang C.I. (Wiley, New York), (2007)

  115. C.D. Tran, Appl. Spectrosc. Rev. 38, 133–153 (2013)

    ADS  Google Scholar 

  116. J. Call, R.A. Lodder, Application of a liquid crystal tunable filter to near-infrared spectral searches, in Proc. SETICon02 (2002)

  117. W.J. Marinelli, C.M. Gittins, A.H. Gelb, B.D. Green, Tunable Fabry-Perot etalon-based long-wavelength infrared imaging spectroradiometer. Appl. Opt. 38, 2594 (1999)

    ADS  Google Scholar 

  118. P. Mouroulis, R.O. Green, T.G. Chrien, Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information. Appl. Opt. 39, 2210–2220 (2000)

    ADS  Google Scholar 

  119. A. Casini, F. Lotti, M. Picollo, L. Stefani, A. Aldrovandi, Fourier transform interferometric imagingspectrometry: a new tool for the study of reflectance and fluorescence of polychrome surfaces. Cons. Sci. 38, 248 (2002)

    Google Scholar 

  120. F. Vagni, Survey of hyperspectral and multispectral imaging technologies, RTO Technical Report TR-SET-065-P3, (2007), (AC/323(SET-065)TP/44 NATO)

  121. R.P. Gupta, Tunable multi-spectral imaging system technology for airborne applications (Springer-Verlag GmbH Germany), (2017), https://doi.org/10.1007/978-3-662-05283-9

  122. D.W. Coulter, P.L. Hauff, W.L. Kerby, Airborne Hyperspectral Remote Sensing, Advances in Airborne Geophysics, in Proc. Exploration 07: Fifth Decennial International Conference on Mineral Exploration, edited by Milkereit B., 375-386 (2007)

  123. T. Lillesand, R.W. Kiefer, J. Chipman, Remote sensing and image interpretation, (John Wiley and Sons), 736p (2015)

  124. EN ISO 9488, Solar energy—vocabulary, (Brussels: European Committee for Standardization (CEN)), (1999)

  125. A. Fernandez-Garcia, F. Sutter, M. Montecchi, F. Sallaberry, A. Heimsath, C. Heras, E. Le Baron, A. Soum-Glaude, Parameters and method to evaluate the solar reflectance properties of reflector materials for concentrating solar power technology, (SolarPACES Guidelines, Official Reflectance Guideline Version 3.0), (2018)

  126. Commission Internationale de l’éclairage (CIE), Colorimetry, (3rd Edition, CIE Publication 15), (2004)

  127. ISO/CIE, Colorimetry—Part 3: CIE tristimulus values, 11664-3, (The International Organization for Standardization), (2019)

  128. E.I. Stearns, R.E. Stearns, An example of a method for correcting radiance data for bandpass error. Color Res. Appl. 13, 257–259 (1988)

    Google Scholar 

  129. ASTM E308-01, Standard Practice for Computing the Colors of Objects by Using the CIE System, Color Res. Appl.,ICS Code Number 17.180.20 (2001), https://doi.org/10.1520/E0308-01

  130. F. Rosi, C. Miliani, R. Braun, R. Harig, D. Sali, B.G. Brunetti, A. Sgamellotti, Noninvasive Analysis of Paintings by Mid-infrared Hyperspectral Imaging,Angew. Chem. Int. Ed., 52, 5258 –5261 (2013), https://doi.org/10.1002/anie.201209929; 2013, 52,

  131. A. Cesaratto, A. Nevin, G. Valentini, L. Brambilla, C. Castiglioni, L. Toniolo et al., A novel classification method for multispectral imaging combined with portable Raman spectroscopy for the analysis of a painting by Vincent Van Gogh. Appl. Spectrosc. 67, 1234–1241 (2013). https://doi.org/10.1366/13-07032

    Article  ADS  Google Scholar 

  132. M. Aceto, A. Agostino, G. Fenoglio, M. Gulmini, V. Bianco, E. Pellizzi, Non invasive analysis of miniature paintings: proposal for an analytical protocol. Spectrochim. Acta A 91, 352–359 (2012)

    ADS  Google Scholar 

  133. AG. Metrohm, Metrohm Monograph 8.108.5026EN – A guide to near-infrared spectroscopic analysis of industrial manufacturing processes. CH-9101 Herisau, Switzerland, (2014)

  134. Analytical Methods Committee AMCTB No 75, UV-visible-NIR reflectance spectrophotometry in cultural heritage: Background paper, Anal. Methods8, 5894 (2016), https://doi.org/10.1039/c6ay90112c

  135. M. Picollo, C. Cucci, A. Casini, L. Stefani, Hyper-spectral imaging technique in the cultural heritage field: new possible scenarios. Sensors 8, 5894 (2020). https://doi.org/10.1039/c6ay90112c

    Article  Google Scholar 

  136. H. Deborah, S. George, J.Y. Hardeberg, Pigment Mapping of the Scream (1893) Based on Hyperspectral Imaging, in Proc. Image and Signal Processing, ICISP, edited by Elmoataz A., Lezoray O., Nouboud F. and Mammass D.(Springer), pp. 248 (2014)

  137. D. Comelli, A. Nevin, G. Valentini, I. Osticioli, E.M. Castellucci, L. Toniolo, D. Gulotta, R. Cubedu, Insights into Masolino’s wall paintings in Castiglione Olona: advanced reflectance and fluorescence imaging analysis. J. Cult. Herit. 12, 11–18 (2011). https://doi.org/10.1016/j.culher.2010.06.003

    Article  Google Scholar 

  138. J.K. Delaney, P. Ricciardi, L. Glinsman, M. Facini, M. Thoury, M. Palmer, E.Rene de la Rie, Use of imaging spectroscopy, fiber optic reflectance spectroscopy, and X-ray fluorescence to map and identify pigments in illuminated manuscripts. Stud. Conserv. 59, 91–101 (2014). https://doi.org/10.1179/2047058412Y.0000000078

    Article  Google Scholar 

  139. K.A. Dooley, J. Coddington, J. Kreuger, D.M. Conover, M. Loew, J.K. Delaney, Standoff chemical imaging finds evidence for Jackson Pollock’s selective use of alkyd and oil binding media in a famous ‘drip’ painting. Anal. Methods 9, 28–37 (2017)

    Google Scholar 

  140. F. Gabrieli, K. Dooley, M. Facini, J.K. Delaney, Near-UV to mid-IR reflectance imaging spectroscopy of paintings on the macroscale. Sci. Adv. 5, eaaw7794 (2019). https://doi.org/10.1126/sciadv.aaw7794

    Article  ADS  Google Scholar 

  141. A. Dooley, S. Lomax, J.G. Zeibel, C. Miliani, P. Ricciardi, A. Hoenigswald et al., Mapping of egg yolk and animal skin glue paint binders in Early Renaissance paintings using near infrared reflectance imaging spectroscopy. Analyst138, 4838–4848 (2013). https://doi.org/10.1039/c3an00926b

    Article  ADS  Google Scholar 

  142. S. Mosca, R. Alberti, T. Frizzi, A. Nevin, G. Valentini, D. Comelli, D. Comelli, A whole spectroscopic mapping approach for studying the spatial distribution of pigments in paintings. Appl. Phys. A Mater. Sci. Process. 122, 815 (2016). https://doi.org/10.1007/s00339-016-0345-8

    Article  ADS  Google Scholar 

  143. S. Legrand, F. Vanmeert, G. Van der Snickt, M. Alfeld, W. De Nolf, J. Dik et al., Examination of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red spectroscopy to computed X-ray laminograph. Herit. Sci. 2, 13 (2014). https://doi.org/10.1186/2050-7445-2-13

    Article  Google Scholar 

  144. A. Deneckere, M. De Reu, M.P. Martens, K. De Coene, B. Vekemans, L. Vincze, P. De Mayer, P. Vandenabeele, L. Moens, The use of a multi-method approach to identify the pigments in the 12th century manuscript Liber Floridus. Spectrochim. Acta A. 80, 1125–132 (2011)

    Google Scholar 

  145. M. Thoury, J.K. Delaney, E.R. De La Rie, M. Palmer, K. Morales, J. Krueger, Near-infrared luminescence of cadmium pigments: in situ identification and mapping in paintings. Appl. Spectrosc. 65(8939–951), 939–951 (2011). https://doi.org/10.1366/11-06230

    Article  ADS  Google Scholar 

  146. A. Dooley, D.M. Conover, L.D. Glinsman, J.K. Delaney, Complementary standoff chemical imaging to map and identify artist materials in an early Italian Renaissance panel painting. Angew. Chem. 126, 13995–13999 (2014). https://doi.org/10.1002/anie.201407893

    Article  Google Scholar 

  147. F. Daniel, A. Mounier, J. Pérez-Arantegui, C. Pardos, N. Prieto-Taboada, Vallejuelo S. De Fdez-Ortiz, K. Castro, Hyperspectral imaging applied to the analysis of Goya paintings in the Museum of Zaragoza (Spain). Microchem. J.126, 13995–13999 (2016). https://doi.org/10.1016/j.microc.2015.11.04

    Article  Google Scholar 

  148. F. Daniel, A. Mounier, J. Pérez-Arantegui, C. Pardos, N. Prieto-Taboada, Vallejuelo S. De Fdez-Ortiz, K. Castro, Comparison between non-invasive methods used on paintings by Goya and his contemporaries: hyperspectral imaging vs. point-by-point spectroscopic analysis. Anal. Bioanal. Chem. 409, 4047–4056 (2017). https://doi.org/10.1007/s00216-017-0351-5

    Article  Google Scholar 

  149. S. Mosca, T. Frizzi, M. Pontone, R. Alberti, L. Bombelli, V. Capogrosso, Identification of pigments in different layers of illuminated manuscripts by X-ray fluorescence mapping and Raman spectroscopy. Microchem. J. 124, 775–784 (2016). https://doi.org/10.1016/j.microc.2015.10.038

    Article  Google Scholar 

  150. K. Janssens, G. Van Der Snickt, M. Alfeld, P. Noble, A. Van Loon, J.K. Delaney, D. Conover, J. Zeibel, J. Dik, Rembrandt’s “Saul and David”: use of multiple types of smalt evidenced by means of non-destructive imaging. Microchem. J. 126, 515–523 (2016). https://doi.org/10.1016/j.microc.2016.01.013

    Article  Google Scholar 

  151. S.R. Amato, A. Burnstock, M. Cross, K. Janssens, F. Rosi, L. Cartechini, R. Fontana, A. Dal Fovo, M. Paolantoni, C. Grazia, A. Romani, Interpreting technical evidence from spectral imaging of paintings by douard Manet in the Courtauld Gallery. X-ray Spectrom. 48, 282–292 (2019)

    ADS  Google Scholar 

  152. N.S. Daly, M. Sullivan, L. Lee, J.K. Delaney, K. Trentelman, Odilon Redon’s noir drawings: characterization of materials and methods using noninvasive imaging and spectroscopies. Herit. Sci. 7, 1–43 (2019). https://doi.org/10.1186/s40494-019-0286-6

    Article  Google Scholar 

  153. A. Dal Fovo, A. Mazzinghi, S. Omarini, E. Pampaloni, J. Striova, R. Fontana, Non-invasive mapping methods for pigments analysis of Roman mural paintings. J. Cult. Herit. 43, 311–318 (2020). https://doi.org/10.1016/j.culher.2019.12.00

    Article  Google Scholar 

  154. A. Dal Fovo, J. Striova, E. Pampaloni, A. Fedele, M. Morita, D. Amaya, F. Grazzi, M. Cimò, C. Cirrincione, R. Fontana, Rubens’ painting as inspiration of a later tapestry: non-invasive analyses provide insight into artworks’ history. Microchem. J. 153, 104472 (2020). https://doi.org/10.1016/j.microc.2019.104472

    Article  Google Scholar 

  155. N. De Manincor, G. Marchioro, E. Fiorin, M. Raffaelli, O. Salvadori, C. Daffara, Integration of multispectral visible-infrared imaging and pointwise X-ray fluorescence data for the analysis of a large canvas painting by Carpaccio. Microchem. J. 153, 104469 (2020). https://doi.org/10.1016/j.microc.2019.104469

    Article  Google Scholar 

  156. M. Hain, J. Bartl, V. Jacko, Multispectral analysis of cultural heritage artefacts. Meas. Sci. Rev. 3, 9–12 (2003)

    Google Scholar 

  157. E. Ravaud, L. Pichon, E. Laval, V. Gonzalez, M. Eveno, T. Calligaro, Development of a versatile XRF scanner for the elemental imaging of paintworks. Appl. Phys. A 122, 17 (2016). https://doi.org/10.1007/s00339-015-9522-4

    Article  ADS  Google Scholar 

  158. D. Thurrowgood, D. Paterson, M.D. De Jonge, R. Kirkham, S. Thurrowgood, D.L. Howard, A hidden portrait by Edgar Degas. Sci. Rep. 6, 29594 (2016). https://doi.org/10.1038/srep29594

    Article  ADS  Google Scholar 

  159. G. Van der Snickt, A. Martins, J.K. Delaney, K. Janssens, J. Zeibel, M. Duffy, C. McGlinchey, B. Van Driel, J. Dik, Exploring a hidden painting below the surface of René Magritte’s Le Portrait. Appl. Spectrosc. 70, 57–67 (2016). https://doi.org/10.1177/0003702815617123

    Article  ADS  Google Scholar 

  160. P.A. Favero, J. Mass, J.K. Delaney, A.R. Woll, A.M. Hull, K.A. Dooley, A.C. Finnefrock, Reflectance imaging spectroscopy and synchrotron radiation X-ray fluorescencemapping used in a technical study of The Blue Room by Pablo Picasso. Herit. Sci. 5, 13 (2017). https://doi.org/10.1186/s40494-017-0126-5

    Article  Google Scholar 

  161. E. Herens, C. Defeyt, P. Walter, D. Strivay, Discovery of a woman portrait behind La Violoniste by Kees van Dongen through hyperspectral imaging. Herit. Sci. 5, 14 (2017). https://doi.org/10.1186/s40494-017-0127-4

    Article  Google Scholar 

  162. E. Pouyet, S. Devine, T. Grafakos, R. Kieckhefer, J. Salvant, L. Smieska, A. Woll, A. Katsaggelos, O. Cossairt, M. Walton, Revealing the biography of a hidden medievalmanuscript using synchrotron and conventional imaging techniques. Anal. Chim. Acta 982, 20–30 (2017). https://doi.org/10.1016/j.aca.2017.06.016

    Article  Google Scholar 

  163. L. De Vaguerie, S. Rochut, M. Alfeld, P. Walter, S. Astier, V. Gontero, F. Boulc’h, XRF and reflectance hyperspectral imaging on a 15th century illuminated manuscript: combining imaging and quantitative analysis to understand the artist’s technique, Herit. Sci, 6, 11 (2018) https://doi.org/10.1186/s40494-018-0177-2

  164. A. Harth, G. Van Der Snickt, O. Schalm, K. Janssens, G. Blanckaert, The young Van Dyck’s fingerprint: a technical approach to assess the authenticity of a disputed painting. Herit. Sci 5, 22 (2017). https://doi.org/10.1186/s40494-017-0136-3

    Article  Google Scholar 

  165. L. Pronti, M. Romani, G. Verona-Rinati, O. Tarquini, F. Colao, M. Colapietro, A. Pifferi, M. Cestelli-Guidi, M. Marinelli, Post-processing of VIS, NIR, and SWIR multispectral images of paintings. New discovery on the the drunkenness of Noah, Painted by Andrea Sacchi, Stored at Palazzo Chigi (Ariccia, Rome). Heritage2, 2275–2286 (2019). https://doi.org/10.3390/heritage2030139

    Article  Google Scholar 

  166. G.J. Tserevelakis, I. Vrouvaki, P. Siozos, K. Melessanaki, K. Hatzigiannakis, C. Fotakis, G. Zacharakis, Photoacoustic imaging reveals hidden underdrawings in paintings. Sci. Rep. 7, 747 (2017). https://doi.org/10.1038/s41598-017-00873-7

    Article  ADS  Google Scholar 

  167. A. Dal Fovo, G.J. Tserevelakis, A. Papanikolaou, G. Zacharakis, R. Fontana, Combined photoacoustic imaging to delineate the internal structure of paintings. Opt. Lett. 44, 919–922 (2019)

    ADS  Google Scholar 

  168. R. Fontana, M.C. Gambino, M. Greco, L. Marras, M. Materazzi, E. Pampaloni, A. Pelagotti, L. Pezzati, P. Poggi, C. Sanapo, 2D and 3D optical diagnostic techniques applied to Madonna dei Fusi by Leonardo da Vinci, in Proc. SPIE 5857, Optics for Arts, Architecture, and Archaeology, edited by Salimbeni R. and Pezzati L. (The International Society for Optical Engineering), pp. 58570L (2005), https://doi.org/10.1117/12.612535

  169. R. Bellucci, P.L. Carcagni, A.D. Patrib, R. Fontana, C. Frosinini, M.C. Gambino, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, Integration of image data from 2D and 3D optical techniques for painting conservation applications. Imaging Sci. J. 55, 80–89 (2007)

    Google Scholar 

  170. H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, D. Saunders,Optical coherence tomography for art conservation and archaeology, in Proc. SPIE 6618, Optics for Arts, Architecture, and Archaeology, edited by Salimbeni R. and Pezzati L. (The International Society for Optical Engineering), p. 661805 (2007), https://doi.org/10.1117/12.726032

  171. P. Targowski, M. Iwanicka, Optical coherence tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects–a review. Appl. Phys. A 106, 2265–277 (2012)

    Google Scholar 

  172. H. Liang, R. Lange, H. Howard, J. Spooner, Non-invasive investigations of a wall painting using optical coherence tomography and hyperspectral imaging, in Proc. SPIE 8084, Optics for Arts, Architecture, and Archaeology III, edited by Fotakis C., Pezzati L. and Salimbeni R. (The International Society for Optical Engineering), p. 8084F (2011), https://doi.org/10.1117/12.890088

  173. H. Liang, R. Lange, B. Peric, M. Spring, Optimum spectral window for imaging of art with optical coherence tomography. Appl. Phys. B 106, 4589–602 (2013)

    Google Scholar 

  174. H. Liang, A. Lucian, R. Lange, C.S. Cheung, B. Su, Remote spectral imaging with simultaneous extraction of 3D topography for historical wall paintings. ISPRS J. Photogramm. 95, 13–22 (2014). https://doi.org/10.1016/j.isprsjprs.2014.05.011

    Article  Google Scholar 

  175. R. Fontana, A. Dal Fovo, J. Striova, L. Pezzati, E. Pampaloni, M. Raffaelli, M. Barucci, Application of non-invasive optical monitoring methodologies to follow and record painting cleaning processes. Appl. Phys. A 121, 957–966 (2015)

    ADS  Google Scholar 

  176. J. Striova, R. Fontana, M. Barucci, A. Felici, E. Marconi, E. Pampaloni, M. Raffaelli, C. Riminesi, Optical devices provide unprecedented insights into the laser cleaning of calcium oxalate layers. Microchem. J. 124, 331–337 (2016)

    Google Scholar 

  177. P. Targowski, M. Iwanicka, M. Sylwestrzak, C. Frosinini, J. Striova, R. Fontana, Using optical coherence tomography to reveal the hidden history of the Landsdowne Virgin of the Yarnwinder by Leonardo da Vinci and Studio. Angew. Chem.57, 7396–7400 (2018)

    Google Scholar 

  178. P. Klausmeyer, M. Cushman, I. Dobrev, M. Khaleghi, E.J. Harrington, X. Chen, C. Furlong, Quantifying and mapping induced strain in canvas paintings using laser shearography, in The Noninvasive Analysis of Painted Surfaces: Scientific Impact and Conservation Practice, edited by Nevin A. and Doherty T. (Smithsonian Contribution to Museum Conservation), pp. 1–3 (2016)

  179. G. Palma, M. Corsini, P. Cignoni, R. Scopigno, M. Mudge, Dynamic shading enhancement for reflectance transformation imaging. J. Comput. Cult. Heritage3, 1–20 (2010)

    Google Scholar 

  180. D. Francis, R.P. Tatam, R.M. Groves, Shearography technology and applications: a review. Meas. Sci. Technol. 21, 102001 (2010)

    ADS  Google Scholar 

  181. M. Alfeld, J.A.C. Broekaert, Mobile depth profiling and sub-surface imaging techniques for historical paintings—a review. Spectrochim. Acta B 88, 211–230 (2013). https://doi.org/10.1016/j.sab.2013.07.009

    Article  ADS  Google Scholar 

  182. K. Janssens, J. Dik, M. Cotte, J. Susini, Photon-based techniques for nondestructive subsurface analysis of painted cultural heritage artifacts. Acc. Chem. Res. 43, 814–825 (2010)

    Google Scholar 

  183. J. Tasseva, A. Taschin, P. Bartolini, J. Striova, R. Fontana, R. Torre, Thin layered drawing media probed by THz time-domain spectroscopy. Analyst 142, 42–47 (2017)

    ADS  Google Scholar 

  184. K. Fukunaga, Y. Ogawa, S.I. Hayashi, I. Hosako, Terahertz spectroscopy for art conservation. IEICE Electron. Express 4, 258–263 (2007)

    Google Scholar 

  185. J.-M. Manceau, A. Nevin, C. Fotakis, S. Tzortzakis, Terahertz time domain spectroscopy for the analysis of cultural heritage related materials. Appl. Phys. B 90, 365–368 (2008)

    ADS  Google Scholar 

  186. A.J.L. Adam, P.C.M. Planken, S. Meloni, J. Dik, TeraHertz imaging of hidden paint layers on canvas. Opt. Express 17, 3407–3416 (2009)

    ADS  Google Scholar 

  187. J. Doria, G.P. Gallerano, E. Giovenale, A. Casini, C. Cucci, M. Picollo, M. Poggesi, L. Stefani, K. Fukunaga, M. Tamassia, Vis-NIR hyperspectral and terahertz imaging investigations on a fresco painting on “Tavella” by Alessandro Gherardini. J. Infrared, Millimeter Terahertz Waves 38, 390–402 (2017). https://doi.org/10.1007/s10762-017-0357-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Striova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Striova, J., Dal Fovo, A. & Fontana, R. Reflectance imaging spectroscopy in heritage science. Riv. Nuovo Cim. 43, 515–566 (2020). https://doi.org/10.1007/s40766-020-00011-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40766-020-00011-6

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy