Skip to main content
Log in

CADAIT: a code for automatic design and AI training of microbeam systems

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A focused microbeam system with ion beams at MeV energies is a unique tool for material science, biomedical applications, and space risk evaluation. Microbeam system design traditionally relies on experienced knowledge of microbeam optics and many elaborate calculation procedures. In this work, an ion optics design code, CADAIT, is developed to design microbeam systems automatically. For a given microbeam layout, it allows for the automatic optimization of focusing conditions, the calculation of optical parameters, and the size of the focused beam through ray tracing. CADAIT enables the automatic optical design of microbeam layouts under input parameters and the selection of microbeam layouts with high performance. The accuracy of the CADAIT is verified with ion optics software packages (WinTRAX, Zgoubi, and FANM), which show good agreement. The evaluation of the performance of existing microbeam facilities with CADAIT and the application of CADAIT in the automatic design of a 12 MeV proton microbeam system are discussed. Thanks to its high efficiency in the optical design of microbeam systems, the CADAIT code is used to train artificial intelligence (AI) models for the intelligent design of microbeam systems with tremendous CADAIT-generated data. The artificial intelligence trained model, Artificial Intelligence Microbeam Producer (AIMP), is demonstrated to be capable of generating microbeam systems with superior performance and robust layouts within one minute. The above results show that CADAIT can significantly decrease the complexity and duration of microbeam optical design and prove the feasibility of intelligent microbeam design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability Statement

My manuscript has no associated data.

References

  1. M.B.H. Breese, D.N. Jamieson, P.J.C. King, Material analysis using a nuclear microprobe (John Wiley and Sons, New York, 1996)

    MATH  Google Scholar 

  2. H. Imaseki, M. Yukawa, F. Watt, The scanning microbeam PIXE analysis facility at NIRS. Nucl. Instrum. Methods B. 210, 42–47 (2003). https://doi.org/10.1016/S0168-583X(03)01002-4

    Article  ADS  MATH  Google Scholar 

  3. F. Watt, J.A. van Kan, I. Rajta, The National University of Singapore high energy ion nano-probe facility: performance tests. Nucl. Instrum. Methods B. 210, 14–20 (2003). https://doi.org/10.1016/S0168-583X(03)01003-6

    Article  ADS  MATH  Google Scholar 

  4. C. Udalagama, E.J. Teo, S.F. Chan, Proton beam writing of long, arbitrary structures for micro/nano photonics and fluidics applications. Nucl. Instrum. Methods B. 269, 2417–2421 (2011). https://doi.org/10.1016/j.nimb.2011.02.051

    Article  ADS  MATH  Google Scholar 

  5. J. Wei, G. Du, J. Guo, The rectification of mono- and bivalent ions in single conical nanopores. Nucl. Instrum. Methods B. 404, 219–223 (2017). https://doi.org/10.1016/j.nimb.2016.12.015

    Article  ADS  MATH  Google Scholar 

  6. Q. Liu, J. Zhao, J. Guo, Correction to “Sub-5 nm lithography with single GeV heavy ions using inorganic resist.” Nano Lett. 22, 2586–2587 (2022). https://doi.org/10.1021/acs.nanolett.2c00588

    Article  ADS  MATH  Google Scholar 

  7. B.E. Fischer, K.O. Voss, G. Du, Targeted irradiation of biological cells using an ion microprobe—Why a small beam spot is not sufficient for success. Nucl. Instrum. Methods B. 267, 2122–2124 (2009). https://doi.org/10.1016/j.nimb.2009.03.068

    Article  ADS  MATH  Google Scholar 

  8. T. Funayama, T. Sakashita, M. Suzuki, An irradiation device for biological targets using focused microbeams of cyclotron-accelerated heavy ion. NucL. Instrum. Methods B. 465, 101–109 (2020). https://doi.org/10.1016/j.nimb.2019.12.028

    Article  ADS  MATH  Google Scholar 

  9. Y. Tao, H.Q. Tan, Z. Mi, The radiobiology beam line facility at the centre for ion beam applications, national university of Singapore. Nucl. Instrum. Methods B. 456, 26–31 (2019). https://doi.org/10.1016/j.nimb.2019.06.038

    Article  ADS  MATH  Google Scholar 

  10. F. Watt, X. Chen, C.B. Chen, Whole cell structural imaging at 20 nanometre resolutions using MeV ions. Nucl. Instrum. Methods B. 306, 6–11 (2013). https://doi.org/10.1016/j.nimb.2012.11.047

    Article  ADS  MATH  Google Scholar 

  11. Z. Mi, C. Chen, H. Tan, Quantifying nanodiamonds biodistribution in whole cells with correlative iono-nanoscopy. Nat. Commun.Commun. 12, 4657 (2021). https://doi.org/10.1038/s41467-021-25004-9

    Article  ADS  MATH  Google Scholar 

  12. J. Guo, G. Mao, W. Liu, The bitmap decryption model on interleaved SRAM using multiple-bit upset analysis. IEEE Trans. Nucl. Sci.Nucl. Sci. 69, 1857–1864 (2022). https://doi.org/10.1109/TNS.2022.3186083

    Article  ADS  MATH  Google Scholar 

  13. T. Kamiya, K. Takano, T. Satoh, Microbeam complex at TIARA: technologies to meet a wide range of applications. Nucl. Instrum. Methods B. 269, 2184–2188 (2011). https://doi.org/10.1016/j.nimb.2011.02.043

    Article  ADS  MATH  Google Scholar 

  14. Y. Yao, J.A. van Kan, Automatic beam focusing in the 2nd generation PBW line at sub-10nm line resolution. Nucl. Instrum. Methods B. 348, 203–208 (2015). https://doi.org/10.1016/j.nimb.2014.12.066

    Article  ADS  MATH  Google Scholar 

  15. D.N. Jamieson, New generation nuclear microprobe systems. Nucl. Instrum. Methods B. 181, 1–11 (2001). https://doi.org/10.1016/S0168-583X(01)00547-X

    Article  ADS  MATH  Google Scholar 

  16. R. Szymanski, D.N. Jamieson, Ion source brightness and nuclear microprobe applications. Nucl. Instrum. Methods B. 130, 80–85 (1997). https://doi.org/10.1016/S0168-583X(97)00268-1

    Article  ADS  MATH  Google Scholar 

  17. X. Xu, R. Pang, P.S. Raman, Fabrication and development of high brightness nano-aperture ion source. Microelectron. Eng.. Eng. 174, 20–23 (2017). https://doi.org/10.1016/j.mee.2016.12.009

    Article  MATH  Google Scholar 

  18. N. Liu, P. Santhana Raman, X. Xu, Development of ion sources: Towards high brightness for proton beam writing applications. Nucl. Instrum. Methods B. 348, 23–28 (2015). https://doi.org/10.1016/j.nimb.2015.01.017

    Article  ADS  MATH  Google Scholar 

  19. C.G. Ryan, D.N. Jamieson, A high performance quadrupole quintuplet lens system for the CSIRO–GEMOC nuclear microprobe. Nucl. Instrum. Methods B. 158, 97–106 (1999). https://doi.org/10.1016/S0168-583X(99)00360-2

    Article  ADS  MATH  Google Scholar 

  20. P. Barberet, L. Daudin, N. Gordillo, First results obtained using the CENBG nanobeam line: Performances and applications. Nucl. Instrum. Methods B. 269, 2163–2167 (2011). https://doi.org/10.1016/j.nimb.2011.02.036

    Article  ADS  Google Scholar 

  21. C.G. Ryan, D.N. Jamieson, W.L. Griffin, The new CSIRO–GEMOC nuclear microprobe: first results, performance and recent applications. Nucl. Instrum. Methods B. 181, 12–19 (2001). https://doi.org/10.1016/S0168-583X(01)00548-1

    Article  ADS  MATH  Google Scholar 

  22. A. Ponomarov, I. Rajta, G. Nagy, Single-stage quintuplet for upgrading triplet based lens system: simulation for Atomki microprobe. Nucl. Instrum. Methods B. 404, 34–40 (2017). https://doi.org/10.1016/j.nimb.2017.01.057

    Article  ADS  Google Scholar 

  23. A.G. Ponomarev, A.A. Ponomarov, Beam optics in nuclear microprobe: a review. Nucl. Instrum. Methods B. 497, 15–23 (2021). https://doi.org/10.1016/j.nimb.2021.03.024

    Article  ADS  MATH  Google Scholar 

  24. G.W. Grime, F. Watt, Beam optics of quadrupole probe-forming systems (Adam Hilger, Bristol, 1984)

    MATH  Google Scholar 

  25. G.W. Grime, WinTRAX: A raytracing software package for the design of multipole focusing systems. Nucl. Instrum. Methods B. 306, 76–80 (2013). https://doi.org/10.1016/j.nimb.2012.11.038

    Article  ADS  MATH  Google Scholar 

  26. https://www.ph.unimelb.edu.au/~dnj/research/pram/pramdist.htm

  27. G.H. Gillespie, B.W. Hill, Particle optics and accelerator modeling software for industrial and laboratory beamline design. Nucl. Instrum. Methods B. 139, 476–480 (1998). https://doi.org/10.1016/S0168-583X(97)00940-3

    Article  ADS  MATH  Google Scholar 

  28. F. Méot, The ray-tracing code Zgoubi. Nucl. Instrum. Methods A. 427, 353–356 (1999). https://doi.org/10.1016/S0168-9002(98)01508-3

    Article  ADS  MATH  Google Scholar 

  29. F. Méot, The ray-tracing code Zgoubi—Status. Nucl. Instrum. Methods A. 767, 112–125 (2014). https://doi.org/10.1016/j.nima.2014.07.022

    Article  ADS  Google Scholar 

  30. Y. Dou, J.A. van Kan, FANM: a software for focus and aberrations of nuclear microprobe. Ultramicroscopy 220, 113163 (2021). https://doi.org/10.1016/j.ultramic.2020.113163

    Article  MATH  Google Scholar 

  31. R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim.Optim. 11, 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  32. https://www.nist.gov/pml/fundamental-physical-constants

  33. H. Mou, G. Mao, J. Zhang, Design of 50 MeV proton microbeam based on cyclotron accelerator. Nucl. Sci. Tech.. Sci. Tech. 34, 92 (2023). https://doi.org/10.1007/s41365-023-01235-x

    Article  MATH  Google Scholar 

  34. G.W. Grime, F. Watt, G.D. Blower, Real and parasitic aberrations of quadrupole probe-forming systems. Nucl. Instrum. Methods B. 197, 97–109 (1982). https://doi.org/10.1016/0167-5087(82)90123-5

    Article  MATH  Google Scholar 

  35. Y. Dou, T. Osipowicz, J.A. van Kan, Breaking the 10 nm barrier using molecular ions in nuclear microprobes. Ultramicroscopy 253, 113812 (2023). https://doi.org/10.1016/j.ultramic.2023.113812

    Article  MATH  Google Scholar 

  36. Y. Dou, D.N. Jamieson, J. Liu, A study of GeV proton microprobe lens system designs with normal magnetic quadrupole. Nucl. Instrum. Methods B. 412, 214–220 (2017). https://doi.org/10.1016/j.nimb.2017.09.020

    Article  ADS  MATH  Google Scholar 

  37. T. Zhao, R. Zhao, M. Eskénazi, Learning discourse-level diversity for neural dialog models using conditional variational autoencoders. Annu. Meet. Assoc. Comput. Linguist. (2017). https://doi.org/10.48550/arXiv.1703.10960

    Article  MATH  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (No. 2021YFA1601400) and the National Natural Science Foundation of China (Nos. 1197283 and U1632271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghua Du.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, H., Li, Y., Zhao, C. et al. CADAIT: a code for automatic design and AI training of microbeam systems. Eur. Phys. J. Plus 140, 56 (2025). https://doi.org/10.1140/epjp/s13360-024-05895-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05895-5

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy