Preview
Unable to display preview. Download preview PDF.
References
M. Haiman, Proof theory for linear lattices, Advances in Math.58 (1985) 209–242.
H.B. Hunt, III, R.E. Stearns, Monotone boolean functions, distributive lattices, and the complexity of logics, algebraic structures, and computation structures, In: Lecture Notes in Computer Science, Vol. 210 (Springer, Berlin, 1986) 277–290.
D.Mundici, Functions computed by monotone Boolean formulas with no repeated variables, Theoretical Computer Science66 (1989).
L. Pitt, L.G. Valiant, Computational Limitations on Learning from Examples, J. ACM35 (1988) 965–984.
J.E. Savage, The Complexity of Computing, (J. Wiley, New York 1976).
L.G. Valiant, A Theory of the Learnable, Communications ACM27.11 (1984) 1134–1142.
I. Wegener, The Complexity of Boolean Functions, (B.G. Teubner, Stuttgart, and J. Wiley, New York, 1987).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1990 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mundici, D. (1990). Reducibility of monotone formulas to μ-formulas. In: Börger, E., Büning, H.K., Richter, M.M. (eds) CSL '89. CSL 1989. Lecture Notes in Computer Science, vol 440. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52753-2_45
Download citation
DOI: https://doi.org/10.1007/3-540-52753-2_45
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-52753-4
Online ISBN: 978-3-540-47137-0
eBook Packages: Springer Book Archive