Skip to main content

Image-Based CLIP-Guided Essence Transfer

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13673))

Included in the following conference series:

Abstract

We make the distinction between (i) style transfer, in which a source image is manipulated to match the textures and colors of a target image, and (ii) essence transfer, in which one edits the source image to include high-level semantic attributes from the target. Crucially, the semantic attributes that constitute the essence of an image may differ from image to image. Our blending operator combines the powerful StyleGAN generator and the semantic encoder of CLIP in a novel way that is simultaneously additive in both latent spaces, resulting in a mechanism that guarantees both identity preservation and high-level feature transfer without relying on a facial recognition network. We present two variants of our method. The first is based on optimization, while the second fine-tunes an existing inversion encoder to perform essence extraction. Through extensive experiments, we demonstrate the superiority of our methods for essence transfer over existing methods for style transfer, domain adaptation, and text-based semantic editing. Our code is available at: https://github.com/hila-chefer/TargetCLIP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdal, R., Qin, Y., Wonka, P.: Image2StyleGAN: how to embed images into the StyleGAN latent space? In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4431–4440 (2019)

    Google Scholar 

  2. Abdal, R., Zhu, P., Femiani, J.C., Mitra, N.J., Wonka, P.: Clip2StyleGAN: unsupervised extraction of StyleGAN edit directions. ArXiv abs/2112.05219 (2021)

    Google Scholar 

  3. Alaluf, Y., Patashnik, O., Cohen-Or, D.: ReStyle: a residual-based StyleGAN encoder via iterative refinement. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6691–6700 (2021)

    Google Scholar 

  4. Bau, D., et al.: Semantic photo manipulation with a generative image prior. ACM Trans. Graph. (TOG) 38, 1–11 (2019)

    Article  Google Scholar 

  5. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 95–104 (2017)

    Google Scholar 

  6. Chong, M.J., Forsyth, D.: JoJoGAN: one shot face stylization. ArXiv 2112.11641 (2021)

    Google Scholar 

  7. Collins, E., Bala, R., Price, B., Susstrunk, S.: Editing in style: uncovering the local semantics of GANs. In: CVPR, pp. 5771–5780 (2020)

    Google Scholar 

  8. Creswell, A., Bharath, A.A.: Inverting the generator of a generative adversarial network. IEEE Trans. Neural Netw. Learn. Syst. 30, 1967–1974 (2019)

    Article  Google Scholar 

  9. Deng, J., Guo, J., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4685–4694 (2019)

    Google Scholar 

  10. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, vol. 2, pp. 1033–1038 (1999).https://doi.org/10.1109/ICCV.1999.790383

  11. Gal, R., Patashnik, O., Maron, H., Chechik, G., Cohen-Or, D.: StyleGAN-NADA: clip-guided domain adaptation of image generators (2021)

    Google Scholar 

  12. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  13. Gu, J., Shen, Y., Zhou, B.: Image processing using multi-code GAN prior. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3009–3018 (2020)

    Google Scholar 

  14. Guan, S., Tai, Y., Ni, B., Zhu, F., Huang, F., Yang, X.: Collaborative learning for faster StyleGAN embedding. ArXiv abs/2007.01758 (2020)

    Google Scholar 

  15. Härkönen, E., Hertzmann, A., Lehtinen, J., Paris, S.: Ganspace: discovering interpretable gan controls. arXiv preprint arXiv:2004.02546 (2020)

  16. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. Association for Computing Machinery, New York (2001). https://doi.org/10.1145/383259.383295

  17. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, pp. 6629–6640. Curran Associates Inc., Red Hook (2017)

    Google Scholar 

  18. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp. 1510–1519 (2017). https://doi.org/10.1109/ICCV.2017.167

  19. Huang, X., Belongie, S.J.: Arbitrary style transfer in real-time with adaptive instance normalization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1510–1519 (2017)

    Google Scholar 

  20. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  21. Kang, K., Kim, S., Cho, S.: GAN inversion for out-of-range images with geometric transformations. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 13921–13929 (2021)

    Google Scholar 

  22. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4396–4405 (2019)

    Google Scholar 

  23. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: CVPR, pp. 8110–8119 (2020)

    Google Scholar 

  24. Kim, H., Choi, Y., Kim, J., Yoo, S., Uh, Y.: Exploiting spatial dimensions of latent in GAN for real-time image editing. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 852–861 (2021)

    Google Scholar 

  25. Kim, S.S.Y., Kolkin, N., Salavon, J., Shakhnarovich, G.: Deformable style transfer. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 246–261. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_15

    Chapter  Google Scholar 

  26. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2015)

    Google Scholar 

  27. Li, J., Li, D., Xiong, C., Hoi, S.: BLIP: bootstrapping language-image pre-training for unified vision-language understanding and generation (2022)

    Google Scholar 

  28. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Universal style transfer via feature transforms. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, pp. 385–395. Curran Associates Inc., Red Hook (2017)

    Google Scholar 

  29. Lipton, Z.C., Tripathi, S.: Precise recovery of latent vectors from generative adversarial networks. ArXiv abs/1702.04782 (2017)

    Google Scholar 

  30. Liu, M., Li, Q., Qin, Z., Zhang, G., Wan, P., Zheng, W.: BlendGAN: implicitly GAN blending for arbitrary stylized face generation. In: Advances in Neural Information Processing Systems (2021)

    Google Scholar 

  31. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  32. Luan, F., Paris, S., Shechtman, E., Bala, K.: Deep photo style transfer. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, pp. 6997–7005 (2017). https://doi.org/10.1109/CVPR.2017.740

  33. Luan, F., Paris, S., Shechtman, E., Bala, K.: Deep painterly harmonization. Comput. Graph. Forum 37(4), 95–106 (2018). https://doi.org/10.1111/cgf.13478

    Article  Google Scholar 

  34. Luo, J., Xu, Y., Tang, C., Lv, J.: Learning inverse mapping by autoencoder based generative adversarial nets. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) Neural Information Processing. ICONIP 2017. LNCS, vol. 10635, pp. 207–216. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70096-0_22

  35. Ojha, U., et al.: Few-shot image generation via cross-domain correspondence. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10738–10747 (2021)

    Google Scholar 

  36. Patashnik, O., Wu, Z., Shechtman, E., Cohen-Or, D., Lischinski, D.: StyleClip: text-driven manipulation of StyleGAN imagery. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2085–2094 (2021)

    Google Scholar 

  37. Perarnau, G., van de Weijer, J., Raducanu, B., Álvarez, J.M.: Invertible conditional GANs for image editing. ArXiv abs/1611.06355 (2016)

    Google Scholar 

  38. Pidhorskyi, S., Adjeroh, D.A., Doretto, G.: Adversarial latent autoencoders. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14092–14101 (2020)

    Google Scholar 

  39. Radford, A., Kim, J.W., Hallacy, C., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)

  40. Richardson, E., et al.: Encoding in style: a StyleGAN encoder for image-to-image translation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2021

    Google Scholar 

  41. Roich, D., Mokady, R., Bermano, A.H., Cohen-Or, D.: Pivotal tuning for latent-based editing of real images. arXiv preprint arXiv:2106.05744 (2021)

  42. Seitzer, M.: PyTorch-FID: FID Score for PyTorch, August 2020. github.com/mseitzer/pytorch-fid. Version 0.2.1

  43. Shen, Y., Zhou, B.: Closed-form factorization of latent semantics in GANs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1532–1540 (2021)

    Google Scholar 

  44. Sunkavalli, K., Johnson, M.K., Matusik, W., Pfister, H.: Multi-scale image harmonization. ACM Trans. Graph. 29(4) (2010). https://doi.org/10.1145/1778765.1778862

  45. Tewari, A., et al.: StyleRig: rigging StyleGAN for 3d control over portrait images. In: CVPR (2020)

    Google Scholar 

  46. Tewel, Y., Shalev, Y., Schwartz, I., Wolf, L.: Zero-shot image-to-text generation for visual-semantic arithmetic. In: CVPR (2021)

    Google Scholar 

  47. Tov, O., Alaluf, Y., Nitzan, Y., Patashnik, O., Cohen-Or, D.: Designing an encoder for stylegan image manipulation. arXiv preprint arXiv:2102.02766 (2021)

  48. Ullman, S.: High-Level Vision: Object Recognition and Visual Cognition. MIT Press, Cambridge (2000)

    Google Scholar 

  49. Voynov, A., Babenko, A.: Unsupervised discovery of interpretable directions in the GAN latent space. In: International Conference on Machine Learning, pp. 9786–9796. PMLR (2020)

    Google Scholar 

  50. Wang, T., Zhang, Y., Fan, Y., Wang, J., Chen, Q.: High-fidelity GAN inversion for image attribute editing. ArXiv abs/2109.06590 (2021)

    Google Scholar 

  51. Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36

    Chapter  Google Scholar 

  52. Zhu, P., Abdal, R., Femiani, J.C., Wonka, P.: Mind the gap: domain gap control for single shot domain adaptation for generative adversarial networks. ArXiv:2110.08398 (2021)

  53. Zhu, P., Abdal, R., Qin, Y., Wonka, P.: Improved StyleGAN embedding: where are the good latents? ArXiv abs/2012.09036 (2020)

    Google Scholar 

Download references

Acknowledgment

This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant ERC CoG 725974).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hila Chefer .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 12776 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chefer, H., Benaim, S., Paiss, R., Wolf, L. (2022). Image-Based CLIP-Guided Essence Transfer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13673. Springer, Cham. https://doi.org/10.1007/978-3-031-19778-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19778-9_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19777-2

  • Online ISBN: 978-3-031-19778-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy