Skip to main content

FlexRML: A Flexible and Memory Efficient Knowledge Graph Materializer

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2024)

Abstract

We present FlexRML, a flexible and memory efficient software resource for interpreting and executing RML mappings. As a knowledge graph materializer, FlexRML can operate on a wide range of systems, from cloud-based environments to edge devices, as well as resource-constrained IoT devices and real-time microcontrollers. The primary goal of FlexRML is to balance memory efficiency with fast mapping execution. This is achieved by using C++ for the implementation and a result size estimation algorithm that approximates the number of N-Quads generated and, based on the estimate, optimizes bit sizes and data structures used to save memory in preparation for mapping execution. Our evaluation shows that FlexRML’s adaptive bit size and data structure selection results in higher memory efficiency compared to conventional methods. When benchmarked against state-of-the-art RML processors, FlexRML consistently shows lower peak memory consumption across different datasets while delivering faster or comparable execution times.

Resource type: RML Processor

License: GNU AGPLv3

DOI: https://doi.org/10.5281/zenodo.10256148

URL: https://github.com/wintechis/flex-rml

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/RMLio/rmlmapper-java.

  2. 2.

    https://rml.io/implementation-report/.

  3. 3.

    https://github.com/drobilla/serd.

  4. 4.

    https://opensource.googleblog.com/2011/04/introducing-cityhash.html.

  5. 5.

    https://github.com/wintechis/flex-rml-evaluation/.

  6. 6.

    https://figshare.com/articles/dataset/SDM-Genomic-Datasets/14838342/1.

  7. 7.

    https://github.com/wintechis/rml-sensor-benchmark/.

  8. 8.

    https://github.com/SDM-TIB/SDM-RDFizer-Experiments/tree/master/cikm2020/experiments.

  9. 9.

    https://www.gnu.org/software/time/.

  10. 10.

    https://github.com/wintechis/flex-rml.

References

  1. Ahamed, J., Mir, R.N., Chishti, M.A.: RML based ontology development approach in internet of things for healthcare domain. Int. J. Pervasive Comput. Commun. 17(4), 377–389 (2021)

    Article  Google Scholar 

  2. Al-Osta, M., Ahmed, B., Abdelouahed, G.: A lightweight semantic web-based approach for data annotation on IoT gateways. Procedia Comput. Sci. 113, 186–193 (2017)

    Article  Google Scholar 

  3. Arenas-Guerrero, J., Chaves-Fraga, D., Toledo, J., Pérez, M.S., Corcho, O.: Morph-KGC: scalable knowledge graph materialization with mapping partitions. Semant. Web (Preprint) 1–20 (2022)

    Google Scholar 

  4. Arenas-Guerrero, J.: morph-kgc/morph-kgc: 2.6.4 (2023). https://doi.org/10.5281/zenodo.10171377

  5. Chaves-Fraga, D., Priyatna, F., Cimmino, A., Toledo, J., Ruckhaus, E., Corcho, O.: GTFS-Madrid-Bench: a benchmark for virtual knowledge graph access in the transport domain. J. Web Semant. 65, 100596 (2020). https://doi.org/10.1016/j.websem.2020.100596

    Article  Google Scholar 

  6. Daga, E., Asprino, L., Mulholland, P., Gangemi, A., et al.: Facade-X: an opinionated approach to SPARQL anything. Stud. Semant. Web 53, 58–73 (2021)

    Google Scholar 

  7. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping Language (2012). https://www.w3.org/TR/r2rml/

  8. Dasoulas, I., Chaves-Fraga, D., Garijo, D., Dimou, A.: Declarative RDF construction from in-memory data structures with RML (2023)

    Google Scholar 

  9. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle, R.: RML: a generic language for integrated RDF mappings of heterogeneous data. In: 7th Workshop on Linked Data on the Web, vol. 1184 (2014)

    Google Scholar 

  10. eiglesias34, Chaves, D., et al.: SDM-TIB/SDM-RDFizer: v4.7.2.7 (2023). https://doi.org/10.5281/zenodo.10101405

  11. Freedman, D., Pisani, R., Purves, R.: Statistics. 4th edn. W. W. Norton & Co (2007)

    Google Scholar 

  12. Ganzha, M., Paprzycki, M., Pawłowski, W., Szmeja, P., Wasielewska, K.: Towards semantic interoperability between Internet of Things platforms. In: Integration, Interconnection, and Interoperability of IoT Systems, pp. 103–127 (2018)

    Google Scholar 

  13. Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. 54(4) (2021). https://doi.org/10.1145/3447772

  14. Hozdić, E.: Smart factory for industry 4.0: a review. Int. J. Mod. Manuf. Technol. 7(1), 28–35 (2015)

    Google Scholar 

  15. Iglesias, E., Jozashoori, S., Chaves-Fraga, D., Collarana, D., Vidal, M.E.: SDM-RDFizer: an RML interpreter for the efficient creation of RDF knowledge graphs. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 3039–3046 (2020)

    Google Scholar 

  16. Ioannidis, Y.E.: Query optimization. ACM Comput. Surv. (CSUR) 28(1), 121–123 (1996)

    Article  Google Scholar 

  17. Jabbar, S., Ullah, F., Khalid, S., Khan, M., Han, K., et al.: Semantic interoperability in heterogeneous IoT infrastructure for healthcare. Wirel. Commun. Mob. Comput. 2017 (2017)

    Google Scholar 

  18. Lakka, E., et al.: End-to-end semantic interoperability mechanisms for IoT. In: 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 1–6. IEEE (2019)

    Google Scholar 

  19. Lefrançois, M., Zimmermann, A., Bakerally, N.: A SPARQL extension for generating RDF from heterogeneous formats. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, pp. 35–50. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58068-5_3

    Chapter  Google Scholar 

  20. Martino, A., Iannelli, M., Truong, C.: Knowledge injection to counter large language model (LLM) hallucination. In: Pesquita, C., et al. (eds.) ESWC 2023. LNCS, vol. 13998, pp. 182–185. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43458-7_34

    Chapter  Google Scholar 

  21. Megill, N.D., Pavicic, M.: Estimating Bernoulli trial probability from a small sample. arXiv preprint arXiv:1105.1486 (2011)

  22. Moons, B., Sanders, F., Paelman, T., Hoebeke, J.: Decentralized linked open data in constrained wireless sensor networks. In: 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS), pp. 1–6. IEEE (2020)

    Google Scholar 

  23. Oo, S.M., Haesendonck, G., De Meester, B., Dimou, A.: RMLStreamer-SISO: an RDF stream generator from streaming heterogeneous data. In: Sattler, U., et al. (eds.) ISWC 2022. LNCS, vol. 13489, pp. 697–713. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19433-7_40

    Chapter  Google Scholar 

  24. Rodriguez-Muro, M., Rezk, M.: Efficient SPARQL-to-SQL with R2RML mappings. J. Web Semant. 33, 141–169 (2015)

    Article  Google Scholar 

  25. Şimşek, U., Kärle, E., Fensel, D.: RocketRML - a NodeJS implementation of a use-case specific RML mapper. arXiv preprint arXiv:1903.04969 (2019)

  26. Vengerov, D., Menck, A.C., Zait, M., Chakkappen, S.P.: Join size estimation subject to filter conditions. Proc. VLDB Endow. 8(12), 1530–1541 (2015)

    Article  Google Scholar 

  27. de Vleeschauwer, E., Min Oo, S., De Meester, B., Colpaert, P.: Reference conditions: relating mapping rules without joining. In: KGCW 2023, the 4th International Workshop on Knowledge Graph Construction (2023)

    Google Scholar 

  28. Vu, B., Pujara, J., Knoblock, C.A.: D-REPR: a language for describing and mapping diversely-structured data sources to RDF. In: Proceedings of the 10th International Conference on Knowledge Capture, pp. 189–196 (2019)

    Google Scholar 

  29. Wang, L.: Heterogeneous data and big data analytics. Autom. Control Inf. Sci. 3(1), 8–15 (2017)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) through the Antrieb 4.0 project (Grant No. 13IK015B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Freund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Freund, M., Schmid, S., Dorsch, R., Harth, A. (2024). FlexRML: A Flexible and Memory Efficient Knowledge Graph Materializer. In: Meroño Peñuela, A., et al. The Semantic Web. ESWC 2024. Lecture Notes in Computer Science, vol 14665. Springer, Cham. https://doi.org/10.1007/978-3-031-60635-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60635-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60634-2

  • Online ISBN: 978-3-031-60635-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy