Abstract
We present FlexRML, a flexible and memory efficient software resource for interpreting and executing RML mappings. As a knowledge graph materializer, FlexRML can operate on a wide range of systems, from cloud-based environments to edge devices, as well as resource-constrained IoT devices and real-time microcontrollers. The primary goal of FlexRML is to balance memory efficiency with fast mapping execution. This is achieved by using C++ for the implementation and a result size estimation algorithm that approximates the number of N-Quads generated and, based on the estimate, optimizes bit sizes and data structures used to save memory in preparation for mapping execution. Our evaluation shows that FlexRML’s adaptive bit size and data structure selection results in higher memory efficiency compared to conventional methods. When benchmarked against state-of-the-art RML processors, FlexRML consistently shows lower peak memory consumption across different datasets while delivering faster or comparable execution times.
Resource type: RML Processor
License: GNU AGPLv3
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
References
Ahamed, J., Mir, R.N., Chishti, M.A.: RML based ontology development approach in internet of things for healthcare domain. Int. J. Pervasive Comput. Commun. 17(4), 377–389 (2021)
Al-Osta, M., Ahmed, B., Abdelouahed, G.: A lightweight semantic web-based approach for data annotation on IoT gateways. Procedia Comput. Sci. 113, 186–193 (2017)
Arenas-Guerrero, J., Chaves-Fraga, D., Toledo, J., Pérez, M.S., Corcho, O.: Morph-KGC: scalable knowledge graph materialization with mapping partitions. Semant. Web (Preprint) 1–20 (2022)
Arenas-Guerrero, J.: morph-kgc/morph-kgc: 2.6.4 (2023). https://doi.org/10.5281/zenodo.10171377
Chaves-Fraga, D., Priyatna, F., Cimmino, A., Toledo, J., Ruckhaus, E., Corcho, O.: GTFS-Madrid-Bench: a benchmark for virtual knowledge graph access in the transport domain. J. Web Semant. 65, 100596 (2020). https://doi.org/10.1016/j.websem.2020.100596
Daga, E., Asprino, L., Mulholland, P., Gangemi, A., et al.: Facade-X: an opinionated approach to SPARQL anything. Stud. Semant. Web 53, 58–73 (2021)
Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping Language (2012). https://www.w3.org/TR/r2rml/
Dasoulas, I., Chaves-Fraga, D., Garijo, D., Dimou, A.: Declarative RDF construction from in-memory data structures with RML (2023)
Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle, R.: RML: a generic language for integrated RDF mappings of heterogeneous data. In: 7th Workshop on Linked Data on the Web, vol. 1184 (2014)
eiglesias34, Chaves, D., et al.: SDM-TIB/SDM-RDFizer: v4.7.2.7 (2023). https://doi.org/10.5281/zenodo.10101405
Freedman, D., Pisani, R., Purves, R.: Statistics. 4th edn. W. W. Norton & Co (2007)
Ganzha, M., Paprzycki, M., Pawłowski, W., Szmeja, P., Wasielewska, K.: Towards semantic interoperability between Internet of Things platforms. In: Integration, Interconnection, and Interoperability of IoT Systems, pp. 103–127 (2018)
Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. 54(4) (2021). https://doi.org/10.1145/3447772
Hozdić, E.: Smart factory for industry 4.0: a review. Int. J. Mod. Manuf. Technol. 7(1), 28–35 (2015)
Iglesias, E., Jozashoori, S., Chaves-Fraga, D., Collarana, D., Vidal, M.E.: SDM-RDFizer: an RML interpreter for the efficient creation of RDF knowledge graphs. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 3039–3046 (2020)
Ioannidis, Y.E.: Query optimization. ACM Comput. Surv. (CSUR) 28(1), 121–123 (1996)
Jabbar, S., Ullah, F., Khalid, S., Khan, M., Han, K., et al.: Semantic interoperability in heterogeneous IoT infrastructure for healthcare. Wirel. Commun. Mob. Comput. 2017 (2017)
Lakka, E., et al.: End-to-end semantic interoperability mechanisms for IoT. In: 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 1–6. IEEE (2019)
Lefrançois, M., Zimmermann, A., Bakerally, N.: A SPARQL extension for generating RDF from heterogeneous formats. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, pp. 35–50. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58068-5_3
Martino, A., Iannelli, M., Truong, C.: Knowledge injection to counter large language model (LLM) hallucination. In: Pesquita, C., et al. (eds.) ESWC 2023. LNCS, vol. 13998, pp. 182–185. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43458-7_34
Megill, N.D., Pavicic, M.: Estimating Bernoulli trial probability from a small sample. arXiv preprint arXiv:1105.1486 (2011)
Moons, B., Sanders, F., Paelman, T., Hoebeke, J.: Decentralized linked open data in constrained wireless sensor networks. In: 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS), pp. 1–6. IEEE (2020)
Oo, S.M., Haesendonck, G., De Meester, B., Dimou, A.: RMLStreamer-SISO: an RDF stream generator from streaming heterogeneous data. In: Sattler, U., et al. (eds.) ISWC 2022. LNCS, vol. 13489, pp. 697–713. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19433-7_40
Rodriguez-Muro, M., Rezk, M.: Efficient SPARQL-to-SQL with R2RML mappings. J. Web Semant. 33, 141–169 (2015)
Şimşek, U., Kärle, E., Fensel, D.: RocketRML - a NodeJS implementation of a use-case specific RML mapper. arXiv preprint arXiv:1903.04969 (2019)
Vengerov, D., Menck, A.C., Zait, M., Chakkappen, S.P.: Join size estimation subject to filter conditions. Proc. VLDB Endow. 8(12), 1530–1541 (2015)
de Vleeschauwer, E., Min Oo, S., De Meester, B., Colpaert, P.: Reference conditions: relating mapping rules without joining. In: KGCW 2023, the 4th International Workshop on Knowledge Graph Construction (2023)
Vu, B., Pujara, J., Knoblock, C.A.: D-REPR: a language for describing and mapping diversely-structured data sources to RDF. In: Proceedings of the 10th International Conference on Knowledge Capture, pp. 189–196 (2019)
Wang, L.: Heterogeneous data and big data analytics. Autom. Control Inf. Sci. 3(1), 8–15 (2017)
Acknowledgements
This work was funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) through the Antrieb 4.0 project (Grant No. 13IK015B).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Freund, M., Schmid, S., Dorsch, R., Harth, A. (2024). FlexRML: A Flexible and Memory Efficient Knowledge Graph Materializer. In: Meroño Peñuela, A., et al. The Semantic Web. ESWC 2024. Lecture Notes in Computer Science, vol 14665. Springer, Cham. https://doi.org/10.1007/978-3-031-60635-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-60635-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-60634-2
Online ISBN: 978-3-031-60635-9
eBook Packages: Computer ScienceComputer Science (R0)