Skip to main content

Bayesian Detector Combination for Object Detection with Crowdsourced Annotations

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Acquiring fine-grained object detection annotations in unconstrained images is time-consuming, expensive, and prone to noise, especially in crowdsourcing scenarios. Most prior object detection methods assume accurate annotations; A few recent works have studied object detection with noisy crowdsourced annotations, with evaluation on distinct synthetic crowdsourced datasets of varying setups under artificial assumptions. To address these algorithmic limitations and evaluation inconsistency, we first propose a novel Bayesian Detector Combination (BDC) framework to more effectively train object detectors with noisy crowdsourced annotations, with the unique ability of automatically inferring the annotators’ label qualities. Unlike previous approaches, BDC is model-agnostic, requires no prior knowledge of the annotators’ skill level, and seamlessly integrates with existing object detection models. Due to the scarcity of real-world crowdsourced datasets, we introduce large synthetic datasets by simulating varying crowdsourcing scenarios. This allows consistent evaluation of different models at scale. Extensive experiments on both real and synthetic crowdsourced datasets show that BDC outperforms existing state-of-the-art methods, demonstrating its superiority in leveraging crowdsourced data for object detection. Our code and data are available at: https://github.com/zhiqin1998/bdc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S., Navab, N.: AggNet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imag. 35(5), 1313–1321 (2016)

    Article  Google Scholar 

  2. Baumgartner, C.F., et al.: PHiSeg: capturing uncertainty in medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 119–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_14

    Chapter  Google Scholar 

  3. Bernard, J.M., Smith, A.F.M.: Bayesian Theory, chap. 3, pp. 136–138. Wiley, West Sussex (1993)

    Google Scholar 

  4. Bernhardt, M., et al.: Active label cleaning for improved dataset quality under resource constraints. Nature Commun. 13(1), 1161 (2022)

    Article  Google Scholar 

  5. Budd, S., et al.: Can non-specialists provide high quality gold standard labels in challenging modalities? In: Albarqouni, S., et al. (eds.) DART/FAIR -2021. LNCS, vol. 12968, pp. 251–262. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87722-4_23

    Chapter  Google Scholar 

  6. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-End object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  7. Chen, Z., et al.: Structured probabilistic end-to-end learning from crowds. In: International Joint Conference on Artificial Intelligence, pp. 1512–1518 (2020)

    Google Scholar 

  8. Dawid, A.P., Skene, A.M.: Maximum likelihood estimation of observer error-rates using the EM algorithm. J. Roy. Statist. Soc. Ser. C (Appl. Statist.) 28(1), 20–28 (1979)

    Google Scholar 

  9. Dung, N.B., Nguyen, H.Q., Elliott, J., Nhan, N.T., Culliton, P.: KeepLearning: VinBigData chest x-ray abnormalities detection (2020). https://kaggle.com/competitions/vinbigdata-chest-xray-abnormalities-detection

  10. Everingham, M., Luc Van Gool, C.K.I.W., Winn, J., Zisserman, A.: The PASCAL visual object classes challenge 2007 (VOC 2007). Int. J. Comput. Vis. 88, 303–338 (2010)

    Google Scholar 

  11. Fang, Y., et al.: EVA: exploring the limits of masked visual representation learning at scale. In: IEEE Conference on Computer Vision Pattern Recognition, Vancouver, Canada, pp. 19358–19369 (2023)

    Google Scholar 

  12. Goh, H.W., Tkachenko, U., Mueller, J.: CROWDLAB: supervised learning to infer consensus labels and quality scores for data with multiple annotators (2022). arXiv:2210.06812

  13. Guan, M.Y., Gulshan, V., Dai, A.M., Hinton, G.E.: Who said what: modeling individual labelers improves classification. In: AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, pp. 3109–3118 (2017)

    Google Scholar 

  14. Hu, Y., Meina, S.: Crowd R-CNN: an object detection model utilizing crowdsourced labels. In: International Conference on Vision Image Signal Processing, Bangkok, Thailand, pp. 1–7 (2020)

    Google Scholar 

  15. Isupova, O., Li, Y., Kuzin, D., Roberts, S.J., Willis, K.J., Reece, S.: BCCNet: bayesian classifier combination neural network. In: Neural Information Processing System Workshop Machine Learning and Development, Montréal, Canada (2018)

    Google Scholar 

  16. Jensen, M.H., Jørgensen, D.R., Jalaboi, R., Hansen, M.E., Olsen, M.A.: Improving uncertainty estimation in convolutional neural networks using inter-rater agreement. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 540–548. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_59

    Chapter  Google Scholar 

  17. Ji, W., et al.: Learning calibrated medical image segmentation via multi-rater agreement modeling. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 12336–12346 (2021)

    Google Scholar 

  18. Jungo, A., et al.: On the effect of inter-observer variability for a reliable estimation of uncertainty of medical image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 682–690. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_77

    Chapter  Google Scholar 

  19. Kim, H., Ghahramani, Z.: Bayesian classifier combination. In: International Conference on Artificial Intelligence Statistics, La Palma, Canary Islands, pp. 619–627 (2012)

    Google Scholar 

  20. Kohl, S.A.A., et al.: A probabilistic u-net for segmentation of ambiguous images. In: Advances on Neural Information Processing System, Montréal, Canada, pp. 6965–6975 (2018)

    Google Scholar 

  21. Lazarus, E., Mainiero, M.B., Schepps, B., Koelliker, S.L., Livingston, L.S.: BI-RADS lexicon for US and mammography: interobserver variability and positive predictive value. Radiology 239(2), 385–391 (2006)

    Article  Google Scholar 

  22. Le, K., Tran, T., Pham, H., Nguyen Trung, H., Le, T., Nguyen, H.Q.: Learning from multiple expert annotators for enhancing anomaly detection in medical image analysis. IEEE Access 11, 14105–14114 (2023)

    Article  Google Scholar 

  23. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database (2010). http://yann.lecun.com/exdb/mnist

  24. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  25. Maier-Hein, L., et al.: Crowdsourcing for reference correspondence generation in endoscopic images. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 349–356. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10470-6_44

    Chapter  Google Scholar 

  26. Müller, R., Kornblith, S., Hinton, G.: When does label smoothing help? In: Advances on Neural Information Processing Systems, Vancouver, Canada, pp. 4694–4703 (2019)

    Google Scholar 

  27. Murphy, K.: Conjugate bayesian analysis of the gaussian distribution (2007). https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf

  28. Nguyen, H.Q., et al.: VinDr-CXR: an open dataset of chest x-rays with radiologist’s annotations. Sci. Data 9(1), 429 (2022)

    Article  Google Scholar 

  29. Nowruzi, F.E., Kapoor, P., Kolhatkar, D., Hassanat, F., Laganiere, R., Rebut, J.: How much real data do we actually need: Analyzing object detection performance using synthetic and real data. In: International Conference on Machine Learning and Workshop AI Autonomous Driving, Long Beach, CA, USA (2019)

    Google Scholar 

  30. Raykar, V.C., et al.: Learning from crowds. J. Mach. Learn. Res. 11(43), 1297–1322 (2010)

    MathSciNet  Google Scholar 

  31. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances on Neural Information Processing Systems, Montréal, Canada, pp. 91–99 (2015)

    Google Scholar 

  32. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, pp. 658–666 (2019)

    Google Scholar 

  33. Rodrigues, F., Pereira, F.C.: Deep learning from crowds. In: AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, pp. 1611–1618 (2018)

    Google Scholar 

  34. Sheng, V.S., Provost, F., Ipeirotis, P.G.: Get another label? improving data quality and data mining using multiple, noisy labelers. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, pp. 614–622 (2008)

    Google Scholar 

  35. Solovyev, R., Wang, W., Gabruseva, T.: Weighted boxes fusion: ensembling boxes from different object detection models. Image Vis. Comput. 107, 104–117 (2021)

    Article  Google Scholar 

  36. Sudre, C.H., et al.: Let’s agree to disagree: learning highly debatable multirater labelling. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 665–673. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_73

    Chapter  Google Scholar 

  37. Venanzi, M., Guiver, J., Kazai, G., Kohli, P., Shokouhi, M.: Community-based bayesian aggregation models for crowdsourcing. In: International Conference on World Wide Web, Seoul, Korea, pp. 155–164 (2014)

    Google Scholar 

  38. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: IEEE Conference on Computer Vision Pattern Recognition, Vancouver, Canada, pp. 7464–7475 (2023)

    Google Scholar 

  39. Watadani, T., et al.: Interobserver variability in the CT assessment of honeycombing in the lungs. Radiology 266(3), 936–944 (2012)

    Article  Google Scholar 

  40. Wei, H., Xie, R., Feng, L., Han, B., An, B.: Deep learning from multiple noisy annotators as a union. IEEE Trans. Neural Netw. Learn. Syst. 34, 10552–10562 (2022)

    Article  MathSciNet  Google Scholar 

  41. Wei, J., Zhu, Z., Luo, T., Amid, E., Kumar, A., Liu, Y.: To aggregate or not? learning with separate noisy labels. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Long Beach, CA, USA, pp. 2523–2535 (2023)

    Google Scholar 

  42. Whitehill, J., Wu, T.f., Bergsma, J., Movellan, J., Ruvolo, P.: Whose vote should count more: optimal integration of labels from labelers of unknown expertise. In: Advances on Neural Information Processing Systems, Vancouver, Canada, pp. 2035–2043 (2009)

    Google Scholar 

  43. Wu, J., et al.: Multi-rater prism: learning self-calibrated medical image segmentation from multiple raters (2022). arXiv:2212.00601

  44. Yu, S., et al.: Difficulty-aware glaucoma classification with multi-rater consensus modeling. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 741–750. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_72

    Chapter  Google Scholar 

  45. Zhang, L., et al.: Disentangling human error from the ground truth in segmentation of medical images. In: Advances on Neural Information Processing Systems, pp. 15750–15762 (2020)

    Google Scholar 

  46. Zhu, X., Vondrick, C., Ramanan, D., Fowlkes, C.: Do we need more training data or better models for object detection? In: British Machine on Vision Conference, Surrey, UK (2012)

    Google Scholar 

Download references

Acknowledgements

Z.Q. T. acknowledges the support of an Industrial Cooperative Awards in Science and Engineering (ICASE) studentship from the Engineering and Physical Sciences Research Council (EPSRC) for this work. G. C. acknowledges the support of the Engineering and Physical Sciences Research Council (EPSRC) through grant EP/Y018036/1 and the Australian Research Council (ARC) through grant FT190100525. The authors would like to thank the Satellite Applications Catapult for the provision of the disaster response dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Qin Tan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8889 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, Z.Q., Isupova, O., Carneiro, G., Zhu, X., Li, Y. (2025). Bayesian Detector Combination for Object Detection with Crowdsourced Annotations. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15121. Springer, Cham. https://doi.org/10.1007/978-3-031-73036-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73036-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73035-1

  • Online ISBN: 978-3-031-73036-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy