Abstract
In this paper, we survey old and new results about random univariate polynomials over a finite field \(\mathbb{F}_q\). We are interested in three aspects: (1) the decomposition of a random polynomial in terms of its irreducible factors, (2) the usage of random polynomials in algorithms, and (3) the average-case analysis of algorithms that use polynomials over finite fields.
The author was funded by NSERC grant number 238757.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adleman, L.: The function field sieve. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 108–121. Springer, Heidelberg (1994)
Bach, E., von zur Gathen, J., Lenstra Jr., H.W.: Factoring Polynomials over Special Finite Fields. Finite Fields and Their Applications 7, 5–28 (2001)
Ben-Or, M.: Probabilistic algorithms in finite fields. In: Proc. 22nd IEEE Symp. Foundations Computer Science, pp. 394–398 (1981)
Bender, E.: Central and local limit theorems applied to asymptotic enumeration. J. Combin. Theory, Ser. A 15, 91–111 (1973)
Bender, E., Richmond, B.: Central and local limit theorems applied to asymptotic enumeration II: multivariate generating functions. J. Combin. Theory, Ser. A 34, 255–265 (1983)
Berlekamp, E.R.: Algebraic Coding Theory. McGraw Hill, New York (1968)
Blake, I.F., Fuji-Hara, R., Mullin, R.C., Vanstone, S.A.: Computing discrete logarithms in finite fields of characteristic two. SIAM J. Alg. Disc. Meth. 5, 276–285 (1984)
Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudorandom bits. SIAM J. Comput. 13, 850–864 (1984)
Buchstab, A.A.: Asymptotic estimates of a general number theoretic function. Mat. Sbornik 44, 1239–1246 (1937)
Car, M.: Théorèmes de densité dans \(\mathbb{F}\) q [x]. Acta Arith. 48, 145–165 (1987)
Carlitz, L.: The arithmetic of polynomials in a Galois field. Amer. J. Math. 54, 39–50 (1932)
Carlitz, L.: The distribution of irreducible polynomials in several indeterminates. Illinois J. Math. 7, 371–375 (1963)
Carlitz, L.: The distribution of irreducible polynomials in several indeterminates II. Canad. J. Math. 17, 261–266 (1965)
Cohen, S.D.: The distribution of irreducible polynomials in several indeterminates over a finite field. Proc. Edinburgh Math. Soc. 16, 1–17 (1968)
Cohen, S.D.: The values of a polynomial over a finite field. Glasgow Math. J. 14, 205–208 (1973)
Coppersmith, D.: Fast evaluation of logarithms in fields of characteristic two. IEEE Trans. Info. Theory 30, 587–594 (1984)
de Bruijn, N.: On the number of positive integers ≤ x and free of prime factors > y. Indag. Math. 13, 2–12 (1951)
Dickman, K.: On the frequency of numbers containing prime factors of a certain relative magnitude. Ark. Mat. Astr. Fys. 22, 1–14 (1930)
Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inform. Theory 22, 644–654 (1976)
Drmota, M., Panario, D.: A rigorous proof of the Waterloo algorithm for the discrete logarithm problem. Designs, Codes and Cryptography 26, 229–241 (2002)
El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Info. Theory 31, 469–472 (1985)
Evdokimov, S.A.: Factorization of polynomials over finite fields in subexponential time under GRH. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 209–219. Springer, Heidelberg (1994)
Finch, S.R.: Mathematical Constants. Encyclopedia of Mathematics and its Applications, vol. 94. Cambridge University Press, Cambridge (2003)
Flajolet, P., Golin, M.: Mellin transform and asymptotics: the mergesort recurrence. Acta Inf. 31, 673–696 (1994)
Flajolet, P., Gourdon, X., Panario, D.: The complete analysis of a polynomial factorization algorithm over finite fields. J. of Algorithms 40, 37–81 (2001)
Flajolet, P., Odlyzko, A.: Singularity analysis of generating functions. SIAM J. of Disc. Math. 2, 216–240 (1990)
Flajolet, P., Sedgewick, R.: Analytic Combinatorics (in preparation), see: http://www.algo.inria.fr/flajolet/Publications/books.html
Flajolet, P., Soria, M.: Gaussian limiting distributions for the number of components in combinatorial structures. J. of Combin. Theory, Ser. A 53, 165–182 (1990)
Flajolet, P., Soria, M.: General combinatorial schemas: Gaussian limiting distributions and exponential tails. Discrete Math. 114, 159–180 (1993)
Friesen, C., Hensley, D.: The statistics of continued fractions for polynomials over a finite field. Proc. Amer. Math. Soc. 124, 2661–2673 (1996)
Gao, S.: On the deterministic complexity of polynomial factoring. Journal of Symbolic Computation 31, 19–36 (2001)
Gao, S., von zur Gathen, J., Panario, D.: Gauss periods: orders and cryptographical applications. Math. Comp. 67, 343–352 (1998)
Gao, S., Howell, J., Panario, D.: Irreducible polynomials of given forms. In: Mullin, R.C., Mullen, G.L. (eds.) Finite Fields: Theory, Applications, and Algorithms (Fourth International Conference on Finite Fields: Theory, Applications, and Algorithms). Contemporary Mathematics, vol. 225, pp. 43–54. American Mathematical Society (1999)
Gao, S., Lauder, A.: Hensel lifting and polynomial factorisation. Math. Comp. 71, 1663–1676 (2002)
Gao, S., Panario, D.: Tests and constructions of irreducible polynomials over finite fields. In: Cucker, F., Shub, M. (eds.) Foundations of Computational Mathematics, pp. 346–361. Springer, Heidelberg (1997)
Gao, Z., Richmond, B.: Central and local limit theorems applied to asymptotic enumeration IV: multivariate generating functions. J. of Comput. Appl. Math. 41, 177–186 (1992)
von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)
Garefalakis, T., Panario, D.: The index calculus method using non-smooth polynomials. Mathematics of Computation 70, 1253–1264 (2001)
Garefalakis, T., Panario, D.: Polynomials over finite fields free from large and small degree irreducible factors. Journal of Algorithms 44, 98–120 (2002)
von zur Gathen, J., Gerhard, J.: Polynomial factorization over \(\mathbb{F}\) 2. Math. Comp. 71, 1677–1698 (2002)
von zur Gathen, J., Panario, D.: A survey on factoring polynomials over finite fields. Journal of Symbolic Computation 31, 3–17 (2001)
von zur Gathen, J., Shoup, V.: Computing Frobenius maps and factoring polynomials. Comput complexity 2, 187–224 (1992)
Gourdon, X.: Combinatoire, algorithmique et géométrie des polynômes. PhD thesis, École Polytechnique (1996)
Gourdon, X.: Largest component in random combinatorial structures. Discrete Math. 180, 185–209 (1998)
Hayes, D.R.: The distribution of irreducibles in \(\mathbb{F}\) q [x]. Trans. American Math. Soc. 117, 101–127 (1965)
Grabner, P., Heuberger, C., Prodinger, H., Thuswaldner, J.: Efficient linear combinations in elliptic curve cryptography (2003) (preprint)
Kaltofen, E., Shoup, V.: Subquadratic-time factoring of polynomials over finite fields. In: Proc. 27th ACM Symp. Theory of Computing, pp. 398–406 (1995)
Knopfmacher, J., Knopfmacher, A.: The exact length of the Euclidean algorithm in F q [X]. Mathematika 35, 297–304 (1988)
Knopfmacher, A., Knopfmacher, J.: Counting polynomials with a given number of zeros in a finite field. Lin. and Multilin. Alg. 26, 287–292 (1990)
Knopfmacher, J., Knopfmacher, A.: Counting irreducible factors of polynomials over a finite field. SIAM J. on Disc. Math. 112, 103–118 (1993)
Knopfmacher, A., Warlimont, R.: Distinct degree factorizations for polynomials over a finite field. Trans. Amer. Math. Soc. 37, 2235–2243 (1995)
Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Algorithms, vol. 2. Addison-Wesley, Reading (1997)
Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 20. Cambridge University Press, Cambridge (1994)
Ma, K., von zur Gathen, J.: Analysis of Euclidean algorithms for polynomials over finite fields. J. of Symb. Comp. 9, 429–455 (1990)
Mignotte, M., Nicolas, J.L.: Statistiques sur \(\mathbb{F}\) q [x]. Ann. de l’Inst. Henri Poincaré 19, 113–121 (1983)
Niederreiter, H.: Factoring polynomials over finite fields using differential equations and normal bases. Math. Comp. 62, 819–830 (1994)
Odlyzko, A.: Discrete logarithms and their cryptographic significance. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 224–314. Springer, Heidelberg (1985)
Odlyzko, A.: Asymptotic enumeration methods. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, vol. 2, pp. 1063–1229. Elsevier, Amsterdam (1995)
Panario, D., Pittel, B., Richmond, B., Viola, A.: Analysis of Rabin’s irreducibility test for polynomials over finite fields. Random Struct. Alg. 19, 525–551 (2001)
Panario, D., Richmond, B.: Analysis of Ben-Or’s polynomial irreducibility test. Random Struct. Alg. 13, 439–456 (1998)
Panario, D., Richmond, B.: Smallest components in decomposable structures: exp-log class. Algorithmica 29, 205–226 (2001)
Panario, D., Richmond, B.: Exact largest and smallest size of components in decomposable structures. Algorithmica 31, 413–432 (2001)
Rabin, M.O.: Probabilistic algorithms in finite fields. SIAM J. Comp. 9, 273–280 (1980)
Sedgewick, R., Flajolet, P.: An Introduction to the Analysis of Algorithms. Addison-Wesley, Reading (1996)
Shoup, V.: A new polynomial factorization algorithm and its implementation. J. Symb. Comp. 20, 363–397 (1996)
Uchiyama, S.: Note on the mean value of υ(f) II. Proc. Japan Acad. 31, 321–323 (1955)
Williams, K.S.: Polynomials with irreducible factors of specified degree. Canad. Math. Bull. 12, 221–223 (1969)
Zsigmondy, K.: Über die Anzahl derjenigen ganzen ganzzahligen Functionen nten Grades von x , welche in Bezug auf einen gegebenen Primzahlmodul eine vorgeschriebene Anzahl von Wurzeln besitzen. Sitzungsber. Wien Abt II 103, 135–144 (1894)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Panario, D. (2004). What Do Random Polynomials over Finite Fields Look Like?. In: Mullen, G.L., Poli, A., Stichtenoth, H. (eds) Finite Fields and Applications. Fq 2003. Lecture Notes in Computer Science, vol 2948. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24633-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-24633-6_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21324-6
Online ISBN: 978-3-540-24633-6
eBook Packages: Springer Book Archive