Skip to main content

Complexity of the Bollobás-Riordan Polynomial

Exceptional Points and Uniform Reductions

  • Conference paper
Computer Science – Theory and Applications (CSR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5010))

Included in the following conference series:

Abstract

The coloured Tutte polynomial by Bollobás and Riordan is, as a generalization of the Tutte polynomial, the most general graph polynomial for coloured graphs that satisfies certain contraction-deletion identities. Jaeger, Vertigan, and Welsh showed that the classical Tutte polynomial is #P-hard to evaluate almost everywhere by establishing reductions along curves and lines.

We establish a similar result for the coloured Tutte polynomial on integral domains. To capture the algebraic flavour and the uniformity inherent in this type of result, we introduce a new kind of reductions, uniform algebraic reductions, that are well-suited to investigate the evaluation complexity of graph polynomials. Our main result identifies a small, algebraic set of exceptional points and says that the evaluation problem of the coloured Tutte is equivalent for all non-exceptional points, under polynomial-time uniform algebraic reductions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Averbouch, I., Makowsky, J.A.: The complexity of multivariate matching polynomials (January 2007) (preprint)

    Google Scholar 

  2. Bläser, M., Dell, H.: Complexity of the cover polynomial. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 801–812. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Bläser, M., Hoffmann, C.: On the complexity of the interlace polynomial. arXiv:0707.4565 (2007)

    Google Scholar 

  4. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer, New York (1998)

    Google Scholar 

  5. Bollobás, B.: Modern Graph Theory. Springer, Heidelberg (1999)

    Google Scholar 

  6. Bollobás, B., Riordan, O.: A Tutte polynomial for coloured graphs. Combinatorics, Probability and Computing 8(1-2), 45–93 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. In: Grundlehren der mathematischen Wissenschaften, February 1997. Springer, Heidelberg (1997)

    Google Scholar 

  8. Dong, F.M., Koh, K.M., Teo, K.L.: Chromatic Polynomials and Chromaticity of Graphs. World Scientific, Singapore (2005)

    MATH  Google Scholar 

  9. Goldberg, L.A., Jerrum, M.: Inapproximability of the Tutte polynomial. In: Johnson, D.S., Feige, U. (eds.) STOC, pp. 459–468. ACM, New York (2007)

    Google Scholar 

  10. Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the Jones and Tutte polynomials. Mathematical Proceedings of the Cambridge Philosophical Society 108(1), 35–53 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kauffman, L.H.: A Tutte polynomial for signed graphs. Discrete Applied Mathematics 25, 105–127 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Linial, N.: Hard enumeration problems in geometry and combinatorics. SIAM J. Algebraic Discrete Methods 7(2), 331–335 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lotz, M., Makowsky, J.A.: On the algebraic complexity of some families of coloured Tutte polynomials. Advances in Applied Mathematics 32(1), 327–349 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure and Applied Logic 126, 1–3 (2004)

    Article  MathSciNet  Google Scholar 

  15. Makowsky, J.A.: From a zoo to a zoology: Towards a general theory of graph polynomials. Theory of Computing Systems (2008), ISSN 1432-4350

    Google Scholar 

  16. Sokal, A.D.: The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In: Webb, B.S. (ed.) Surveys in Combinatorics. London Mathematical Society Lecture Note Series, vol. 327, pp. 173–226. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  17. Stanley, R.P.: Acyclic orientations of graphs. Discrete Mathematics 306(10-11), 905–909 (2006)

    Article  MATH  Google Scholar 

  18. Welsh, D.J.A.: Matroid Theory. London Mathematical Society Monographs, vol. 8. Academic Press, London (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edward A. Hirsch Alexander A. Razborov Alexei Semenov Anatol Slissenko

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bläser, M., Dell, H., Makowsky, J.A. (2008). Complexity of the Bollobás-Riordan Polynomial. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds) Computer Science – Theory and Applications. CSR 2008. Lecture Notes in Computer Science, vol 5010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79709-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79709-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79708-1

  • Online ISBN: 978-3-540-79709-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy