Skip to main content

A Semantic Proof of Polytime Soundness of Light Affine Logic

  • Conference paper
Computer Science – Theory and Applications (CSR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5010))

Included in the following conference series:

  • 1005 Accesses

Abstract

We define a denotational semantics for Light Affine Logic (LAL) which has the property that denotations of functions are polynomial time computable by construction of the model. This gives a new proof of polytime-soundness of LAL which is considerably simpler than the standard proof based on proof nets and also is entirely semantical in nature. The model construction uses a new instance of a resource monoid; a general method for interpreting variations of linear logic with complexity restrictions introduced earlier by the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amadio, R.M.: Max-plus quasi-interpretations. In: Proceedings of the 7th International Conference on Typed Lambda Calculi and Applications, pp. 31–45 (2003)

    Google Scholar 

  2. Asperti, A., Roversi, L.: Intuitionistic light affine logic. ACM Transactions on Computational Logic 3(1), 137–175 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bellantoni, S., Niggl, K.H., Schwichtenberg, H.: Higher type recursion, ramification and polynomial time. Annals of Pure and Applied Logic 104, 17–30 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cook, S., Urquhart, A.: Functional interpretations of feasible constructive arithmetic. Annals of Pure and Applied Logic 63(2), 103–200 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Coppola, P., Martini, S.: Typing lambda terms in elementary logic with linear constraints. In: Proceedings of the 6th International Conference on Typed Lambda-Calculus and Applications, pp. 76–90 (2001)

    Google Scholar 

  6. Crossley, J., Mathai, G., Seely, R.: A logical calculus for polynomial-time realizability. Journal of Methods of Logic in Computer Science 3, 279–298 (1994)

    MathSciNet  Google Scholar 

  7. Lago, U.D., Hofmann, M.: Quantitative models and implicit complexity. In: Proc. Foundations of Software Technology and Theoretical Computer Science, pp. 189–200 (2005)

    Google Scholar 

  8. Girard, J.-Y.: Light linear logic. Information and Computation 143(2), 175–204 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hofmann, M.: Linear types and non-size-increasing polynomial time computation. In: Proceedings of the 14th IEEE Syposium on Logic in Computer Science, pp. 464–473 (1999)

    Google Scholar 

  10. Hofmann, M.: Safe recursion with higher types and BCK-algebra. Annals of Pure and Applied Logic 104, 113–166 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hofmann, M., Scott, P.: Realizability models for BLL-like languages. Theoretical Computer Science 318(1-2), 121–137 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kreisel, G.: Interpretation of analysis by means of constructive functions of finite types. In: Heyting, A. (ed.) Constructiviey in Mathematics, pp. 101–128. North-Holland, Amsterdam (1959)

    Google Scholar 

  13. Lafont, Y.: Soft linear logic and polynomial time. Theoretical Computer Science 318, 163–180 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lago, U.D., Martini, S.: Phase semantics and decidability of elementary affine logic. Theor. Comput. Sci. 318(3), 409–433 (2004)

    Article  MATH  Google Scholar 

  15. Murawski, A.S., Luke Ong, C.-H.: Discreet games, light affine logic and ptime computation. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 427–441. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Roversi, L.: A p-time completeness proof for light logics. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 469–483. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edward A. Hirsch Alexander A. Razborov Alexei Semenov Anatol Slissenko

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lago, U.D., Hofmann, M. (2008). A Semantic Proof of Polytime Soundness of Light Affine Logic. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds) Computer Science – Theory and Applications. CSR 2008. Lecture Notes in Computer Science, vol 5010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79709-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79709-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79708-1

  • Online ISBN: 978-3-540-79709-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy