Abstract
Many computational models of music fail to capture essential aspects of the high-level musical structure and context, and this limits their usefulness, particularly for musically informed users. We describe two recent approaches to modelling musical harmony, using a probabilistic and a logic-based framework respectively, which attempt to reduce the gap between computational models and human understanding of music. The first is a chord transcription system which uses a high-level model of musical context in which chord, key, metrical position, bass note, chroma features and repetition structure are integrated in a Bayesian framework, achieving state-of-the-art performance. The second approach uses inductive logic programming to learn logical descriptions of harmonic sequences which characterise particular styles or genres. Each approach brings us one step closer to modelling music in the way it is conceptualised by musicians.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anglade, A., Benetos, E., Mauch, M., Dixon, S.: Improving music genre classification using automatically induced harmony rules. Journal of New Music Research 39(4), 349–361 (2010)
Anglade, A., Dixon, S.: Characterisation of harmony with inductive logic programming. In: 9th International Conference on Music Information Retrieval, pp. 63–68 (2008)
Anglade, A., Ramirez, R., Dixon, S.: First-order logic classification models of musical genres based on harmony. In: 6th Sound and Music Computing Conference, pp. 309–314 (2009)
Anglade, A., Ramirez, R., Dixon, S.: Genre classification using harmony rules induced from automatic chord transcriptions. In: 10th International Society for Music Information Retrieval Conference, pp. 669–674 (2009)
Aucouturier, J.J., Defréville, B., Pachet, F.: The bag-of-frames approach to audio pattern recognition: A sufficient model for urban soundscapes but not for polyphonic music. Journal of the Acoustical Society of America 122(2), 881–891 (2007)
Aucouturier, J.J., Pachet, F.: Improving timbre similarity: How high is the sky? Journal of Negative Results in Speech and Audio Sciences 1(1) (2004)
Bello, J.P., Pickens, J.: A robust mid-level representation for harmonic content in music signals. In: 6th International Conference on Music Information Retrieval, pp. 304–311 (2005)
Benetos, E., Kotropoulos, C.: Non-negative tensor factorization applied to music genre classification. IEEE Transactions on Audio, Speech, and Language Processing 18(8), 1955–1967 (2010)
Cathé, P.: Harmonic vectors and stylistic analysis: A computer-aided analysis of the first movement of Brahms’ String Quartet Op. 51-1. Journal of Mathematics and Music 4(2), 107–119 (2010)
Conklin, D.: Representation and discovery of vertical patterns in music. In: Anagnostopoulou, C., Ferrand, M., Smaill, A. (eds.) ICMAI 2002. LNCS (LNAI), vol. 2445, pp. 32–42. Springer, Heidelberg (2002)
Conklin, D., Bergeron, M.: Discovery of contrapuntal patterns. In: 11th International Society for Music Information Retrieval Conference, pp. 201–206 (2010)
Conklin, D., Witten, I.: Multiple viewpoint systems for music prediction. Journal of New Music Research 24(1), 51–73 (1995)
Dixon, S., Pampalk, E., Widmer, G.: Classification of dance music by periodicity patterns. In: 4th International Conference on Music Information Retrieval, pp. 159–165 (2003)
Downie, J., Byrd, D., Crawford, T.: Ten years of ISMIR: Reflections on challenges and opportunities. In: 10th International Society for Music Information Retrieval Conference, pp. 13–18 (2009)
Ebcioğlu, K.: An expert system for harmonizing chorales in the style of J. S. Bach. In: Balaban, M., Ebcioiğlu, K., Laske, O. (eds.) Understanding Music with AI, pp. 294–333. MIT Press, Cambridge (1992)
Fujishima, T.: Realtime chord recognition of musical sound: A system using Common Lisp Music. In: Proceedings of the International Computer Music Conference, pp. 464–467 (1999)
Hainsworth, S.W.: Techniques for the Automated Analysis of Musical Audio. Ph.D. thesis, University of Cambridge, Cambridge, UK (2003)
Harte, C.: Towards Automatic Extraction of Harmony Information from Music Signals. Ph.D. thesis, Queen Mary University of London, Centre for Digital Music (2010)
Krumhansl, C.L.: Cognitive Foundations of Musical Pitch. Oxford University Press, Oxford (1990)
Lerdahl, F., Jackendoff, R.: A Generative Theory of Tonal Music. MIT Press, Cambridge (1983)
Longuet-Higgins, H., Steedman, M.: On interpreting Bach. Machine Intelligence 6, 221–241 (1971)
Mauch, M.: Automatic Chord Transcription from Audio Using Computational Models of Musical Context. Ph.D. thesis, Queen Mary University of London, Centre for Digital Music (2010)
Mauch, M., Dixon, S.: Approximate note transcription for the improved identification of difficult chords. In: 11th International Society for Music Information Retrieval Conference, pp. 135–140 (2010)
Mauch, M., Dixon, S.: Simultaneous estimation of chords and musical context from audio. IEEE Transactions on Audio, Speech and Language Processing 18(6), 1280–1289 (2010)
Mauch, M., Dixon, S., Harte, C., Casey, M., Fields, B.: Discovering chord idioms through Beatles and Real Book songs. In: 8th International Conference on Music Information Retrieval, pp. 111–114 (2007)
Mauch, M., Müllensiefen, D., Dixon, S., Wiggins, G.: Can statistical language models be used for the analysis of harmonic progressions? In: International Conference on Music Perception and Cognition (2008)
Mauch, M., Noland, K., Dixon, S.: Using musical structure to enhance automatic chord transcription. In: 10th International Society for Music Information Retrieval Conference, pp. 231–236 (2009)
Maxwell, H.: An expert system for harmonizing analysis of tonal music. In: Balaban, M., Ebcioiğlu, K., Laske, O. (eds.) Understanding Music with AI, pp. 334–353. MIT Press, Cambridge (1992)
Mearns, L., Tidhar, D., Dixon, S.: Characterisation of composer style using high-level musical features. In: 3rd ACM Workshop on Machine Learning and Music (2010)
Morales, E.: PAL: A pattern-based first-order inductive system. Machine Learning 26(2-3), 227–252 (1997)
Pachet, F.: Surprising harmonies. International Journal of Computing Anticipatory Systems 4 (February 1999)
Papadopoulos, H.: Joint Estimation of Musical Content Information from an Audio Signal. Ph.D. thesis, Université Pierre et Marie Curie – Paris 6 (2010)
Pardo, B., Birmingham, W.: Algorithms for chordal analysis. Computer Music Journal 26(2), 27–49 (2002)
Pérez-Sancho, C., Rizo, D., Iñesta, J.M.: Genre classification using chords and stochastic language models. Connection Science 21(2-3), 145–159 (2009)
Pérez-Sancho, C., Rizo, D., Iñesta, J.M., de León, P.J.P., Kersten, S., Ramirez, R.: Genre classification of music by tonal harmony. Intelligent Data Analysis 14, 533–545 (2010)
Pickens, J., Bello, J., Monti, G., Sandler, M., Crawford, T., Dovey, M., Byrd, D.: Polyphonic score retrieval using polyphonic audio queries: A harmonic modelling approach. Journal of New Music Research 32(2), 223–236 (2003)
Ramirez, R.: Inducing musical rules with ILP. In: Proceedings of the International Conference on Logic Programming, pp. 502–504 (2003)
Raphael, C., Stoddard, J.: Functional harmonic analysis using probabilistic models. Computer Music Journal 28(3), 45–52 (2004)
Scholz, R., Vincent, E., Bimbot, F.: Robust modeling of musical chord sequences using probabilistic N-grams. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 53–56 (2009)
Steedman, M.: A generative grammar for jazz chord sequences. Music Perception 2(1), 52–77 (1984)
Temperley, D., Sleator, D.: Modeling meter and harmony: A preference rule approach. Computer Music Journal 23(1), 10–27 (1999)
Whorley, R., Wiggins, G., Rhodes, C., Pearce, M.: Development of techniques for the computational modelling of harmony. In: First International Conference on Computational Creativity, pp. 11–15 (2010)
Widmer, G.: Discovering simple rules in complex data: A meta-learning algorithm and some surprising musical discoveries. Artificial Intelligence 146(2), 129–148 (2003)
Winograd, T.: Linguistics and the computer analysis of tonal harmony. Journal of Music Theory 12(1), 2–49 (1968)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dixon, S., Mauch, M., Anglade, A. (2011). Probabilistic and Logic-Based Modelling of Harmony. In: Ystad, S., Aramaki, M., Kronland-Martinet, R., Jensen, K. (eds) Exploring Music Contents. CMMR 2010. Lecture Notes in Computer Science, vol 6684. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23126-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-23126-1_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23125-4
Online ISBN: 978-3-642-23126-1
eBook Packages: Computer ScienceComputer Science (R0)