Abstract
Manifold possibilities of hybridizing individual metaheuristics with each other and/or with algorithms from other fields exist. A large number of publications documents the benefits and great success of such hybrids. This article overviews several popular hybridization approaches and classifies them based on various characteristics. In particular with respect to low-level hybrids of different metaheuristics, a unified view based on a common pool template is described. It helps in making similarities and different key components of existing metaheuristics explicit. We then consider these key components as a toolbox for building new, effective hybrid metaheuristics. This approach of thinking seems to be superior to sticking too strongly to the philosophies and historical backgrounds behind the different metaheuristic paradigms. Finally, particularly promising possibilities of combining metaheuristics with constraint programming and integer programming techniques are highlighted.
This work is supported by the European RTN ADONET under grant 504438.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys 35(3), 268–308 (2003)
Glover, F., Kochenberger, G.A.: Handbook of Metaheuristics. Kluwer, Dordrecht (2003)
Hoos, H.H., Stützle, T.: Stochastic Local Search. Morgan Kaufmann, San Francisco (2005)
Glover, F.: Future paths for integer programming and links to artificial intelligence. Decision Sciences 8, 156–166 (1977)
Voß, S., Martello, S., Osman, I.H., Roucairo, C.: Meta-Heuristics: Andvances and Trends in Local Search Paradigms for Optimization. Kluwer, Boston (1999)
Blum, C., Roli, A., Sampels, M. (eds.): Proceedings of the First International Workshop on Hybrid Metaheuristics, Valencia, Spain (2004)
Blesa, M.J., Blum, C., Roli, A., Sampels, M. (eds.): HM 2005. LNCS, vol. 3636. Springer, Heidelberg (2005)
Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)
Cotta, C.: A study of hybridisation techniques and their application to the design of evolutionary algorithms. AI Communications 11(3–4), 223–224 (1998)
Talbi, E.G.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8(5), 541–565 (2002)
Blum, C., Roli, A., Alba, E.: An introduction to metaheuristic techniques. In: Parallel Metaheuristics, a New Class of Algorithms, pp. 3–42. John Wiley, Chichester (2005)
Cotta, C., Talbi, E.G., Alba, E.: Parallel hybrid metaheuristics. In: Alba, E. (ed.) Parallel Metaheuristics, a New Class of Algorithms, pp. 347–370. John Wiley, Chichester (2005)
Puchinger, J., Raidl, G.R.: Combining metaheuristics and exact algorithms in combinatorial optimization: A survey and classification. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 41–53. Springer, Heidelberg (2005)
El-Abd, M., Kamel, M.: A taxonomy of cooperative search algorithms. In: Blesa, M.J., Blum, C., Roli, A., Sampels, M. (eds.) HM 2005. LNCS, vol. 3636, pp. 32–41. Springer, Heidelberg (2005)
Alba, E. (ed.): Parallel Metaheuristics, a New Class of Algorithms. John Wiley, New Jersey (2005)
Moscato, P.: Memetic algorithms: A short introduction. In: Corne, D., et al. (eds.) New Ideas in Optimization, pp. 219–234. McGraw-Hill, New York (1999)
Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood search techniques. Discrete Applied Mathematics 123(1-3), 75–102 (2002)
Puchinger, J., Raidl, G.R.: Models and algorithms for three-stage two-dimensional bin packing. In: European Journal of Operational Research, Feature Issue on Cutting and Packing (to appear, 2006)
Julstrom, B.A.: Strings of weights as chromosomes in genetic algorithms for combinatorial problems. In: Alander, J.T. (ed.) Proceedings of the Third Nordic Workshop on Genetic Algorithms and their Applications, pp. 33–48 (1997)
Storer, R.H., Wu, S.D., Vaccari, R.: New search spaces for sequencing problems with application to job-shop scheduling. Management Science 38, 1495–1509 (1992)
Glover, F., Laguna, M., Martí, R.: Fundamentals of scatter search and path relinking. Control and Cybernetics 39(3), 653–684 (2000)
Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of the traveling salesman problem. Documenta Mathematica ICM III, 645–656 (1998)
Cotta, C., Troya, J.M.: Embedding branch and bound within evolutionary algorithms. Applied Intelligence 18, 137–153 (2003)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Learning. Addison-Wesley, Reading (1989)
Talukdar, S., Baeretzen, L., Gove, A., de Souza, P.: Asynchronous teams: Cooperation schemes for autonomous agents. Journal of Heuristics 4, 295–321 (1998)
Talukdar, S., Murty, S., Akkiraju, R.: Asynchronous teams. In: Handbook of Metaheuristics, vol. 57, pp. 537–556. Kluwer Academic Publishers, Dordrecht (2003)
Denzinger, J., Offermann, T.: On cooperation between evolutionary algorithms and other search paradigms. In: Proceedings of the Congress on Evolutionary Computation 1999, IEEE Press, Los Alamitos (1999)
Vaessens, R., Aarts, E., Lenstra, J.: A local search template. In: Manner, R., Manderick, B. (eds.) Parallel Problem Solving from Nature, pp. 67–76. Elsevier, Amsterdam (1992)
Calégari, P., Coray, G., Hertz, A., Kobler, D., Kuonen, P.: A taxonomy of evolutionary algorithms in combinatorial optimization. Journal of Heuristics 5(2), 145–158 (1999)
Greistorfer, P., Voß, S.: Controlled pool maintenance in combinatorial optimization. In: Rego, C., Alidaee, B. (eds.) Metaheuristic Optimization via Memory and Evolution – Tabu Search and Scatter Search. Operations Research/Computer Science Interfaces, vol. 30, pp. 382–424. Springer, Heidelberg (2005)
Voß, S.: Hybridizing metaheuristics: The road to success in problem solving. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906, Springer, Heidelberg (2006), http://www.ads.tuwien.ac.at/evocop/Media:Invited-talk-EvoCOP2006-voss.pdf
Fink, A., Voß, S.: HotFrame: A heuristic optimization framework. In: Optimization Software Class Libraries. OR/CS Interfaces Series, Kluwer Academic Publishers, Dordrecht (1999)
Wagner, D.: Eine generische Bibliothek für Metaheuristiken und ihre Anwendung auf das Quadratic Assignment Problem. Master’s thesis, Vienna University of Technology, Institute of Computer Graphics and Algorithms (2005)
Voß, S., Woodruff, D.L. (eds.): Optimization Software Class Libraries. OR/CS Interfaces Series. Kluwer Academic Publishers, Dordrecht (2002)
Marriott, K., Stuckey, P.: Programming with Constraints. The MIT Press, Cambridge (1998)
Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. John Wiley, Chichester (1988)
Focacci, F., Laburthe, F., Lodi, A.: Local search and constraint programming. In: Handbook of Metaheuristics, vol. 57, pp. 369–403. Kluwer Academic Publishers, Dordrecht (2003)
Puchinger, J., Raidl, G.R., Gruber, M.: Cooperating memetic and branch-and-cut algorithms for solving the multidimensional knapsack problem. In: Proceedings of MIC 2005, the 6th Metaheuristics International Conference, Vienna, Austria, pp. 775–780 (2005)
Fischetti, M., Lodi, A.: Local Branching. Mathematical Programming Series B 98, 23–47 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Raidl, G.R. (2006). A Unified View on Hybrid Metaheuristics. In: Almeida, F., et al. Hybrid Metaheuristics. HM 2006. Lecture Notes in Computer Science, vol 4030. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11890584_1
Download citation
DOI: https://doi.org/10.1007/11890584_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46384-9
Online ISBN: 978-3-540-46385-6
eBook Packages: Computer ScienceComputer Science (R0)