Skip to main content

A Unified View on Hybrid Metaheuristics

  • Conference paper
Hybrid Metaheuristics (HM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4030))

Included in the following conference series:

Abstract

Manifold possibilities of hybridizing individual metaheuristics with each other and/or with algorithms from other fields exist. A large number of publications documents the benefits and great success of such hybrids. This article overviews several popular hybridization approaches and classifies them based on various characteristics. In particular with respect to low-level hybrids of different metaheuristics, a unified view based on a common pool template is described. It helps in making similarities and different key components of existing metaheuristics explicit. We then consider these key components as a toolbox for building new, effective hybrid metaheuristics. This approach of thinking seems to be superior to sticking too strongly to the philosophies and historical backgrounds behind the different metaheuristic paradigms. Finally, particularly promising possibilities of combining metaheuristics with constraint programming and integer programming techniques are highlighted.

This work is supported by the European RTN ADONET under grant 504438.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys 35(3), 268–308 (2003)

    Article  Google Scholar 

  2. Glover, F., Kochenberger, G.A.: Handbook of Metaheuristics. Kluwer, Dordrecht (2003)

    MATH  Google Scholar 

  3. Hoos, H.H., Stützle, T.: Stochastic Local Search. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  4. Glover, F.: Future paths for integer programming and links to artificial intelligence. Decision Sciences 8, 156–166 (1977)

    Article  Google Scholar 

  5. Voß, S., Martello, S., Osman, I.H., Roucairo, C.: Meta-Heuristics: Andvances and Trends in Local Search Paradigms for Optimization. Kluwer, Boston (1999)

    Google Scholar 

  6. Blum, C., Roli, A., Sampels, M. (eds.): Proceedings of the First International Workshop on Hybrid Metaheuristics, Valencia, Spain (2004)

    Google Scholar 

  7. Blesa, M.J., Blum, C., Roli, A., Sampels, M. (eds.): HM 2005. LNCS, vol. 3636. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  8. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)

    Article  Google Scholar 

  9. Cotta, C.: A study of hybridisation techniques and their application to the design of evolutionary algorithms. AI Communications 11(3–4), 223–224 (1998)

    Google Scholar 

  10. Talbi, E.G.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8(5), 541–565 (2002)

    Article  Google Scholar 

  11. Blum, C., Roli, A., Alba, E.: An introduction to metaheuristic techniques. In: Parallel Metaheuristics, a New Class of Algorithms, pp. 3–42. John Wiley, Chichester (2005)

    Google Scholar 

  12. Cotta, C., Talbi, E.G., Alba, E.: Parallel hybrid metaheuristics. In: Alba, E. (ed.) Parallel Metaheuristics, a New Class of Algorithms, pp. 347–370. John Wiley, Chichester (2005)

    Chapter  Google Scholar 

  13. Puchinger, J., Raidl, G.R.: Combining metaheuristics and exact algorithms in combinatorial optimization: A survey and classification. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 41–53. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. El-Abd, M., Kamel, M.: A taxonomy of cooperative search algorithms. In: Blesa, M.J., Blum, C., Roli, A., Sampels, M. (eds.) HM 2005. LNCS, vol. 3636, pp. 32–41. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Alba, E. (ed.): Parallel Metaheuristics, a New Class of Algorithms. John Wiley, New Jersey (2005)

    MATH  Google Scholar 

  16. Moscato, P.: Memetic algorithms: A short introduction. In: Corne, D., et al. (eds.) New Ideas in Optimization, pp. 219–234. McGraw-Hill, New York (1999)

    Google Scholar 

  17. Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood search techniques. Discrete Applied Mathematics 123(1-3), 75–102 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Puchinger, J., Raidl, G.R.: Models and algorithms for three-stage two-dimensional bin packing. In: European Journal of Operational Research, Feature Issue on Cutting and Packing (to appear, 2006)

    Google Scholar 

  19. Julstrom, B.A.: Strings of weights as chromosomes in genetic algorithms for combinatorial problems. In: Alander, J.T. (ed.) Proceedings of the Third Nordic Workshop on Genetic Algorithms and their Applications, pp. 33–48 (1997)

    Google Scholar 

  20. Storer, R.H., Wu, S.D., Vaccari, R.: New search spaces for sequencing problems with application to job-shop scheduling. Management Science 38, 1495–1509 (1992)

    Article  MATH  Google Scholar 

  21. Glover, F., Laguna, M., Martí, R.: Fundamentals of scatter search and path relinking. Control and Cybernetics 39(3), 653–684 (2000)

    Google Scholar 

  22. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of the traveling salesman problem. Documenta Mathematica ICM III, 645–656 (1998)

    Google Scholar 

  23. Cotta, C., Troya, J.M.: Embedding branch and bound within evolutionary algorithms. Applied Intelligence 18, 137–153 (2003)

    Article  MATH  Google Scholar 

  24. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  25. Talukdar, S., Baeretzen, L., Gove, A., de Souza, P.: Asynchronous teams: Cooperation schemes for autonomous agents. Journal of Heuristics 4, 295–321 (1998)

    Article  Google Scholar 

  26. Talukdar, S., Murty, S., Akkiraju, R.: Asynchronous teams. In: Handbook of Metaheuristics, vol. 57, pp. 537–556. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  27. Denzinger, J., Offermann, T.: On cooperation between evolutionary algorithms and other search paradigms. In: Proceedings of the Congress on Evolutionary Computation 1999, IEEE Press, Los Alamitos (1999)

    Google Scholar 

  28. Vaessens, R., Aarts, E., Lenstra, J.: A local search template. In: Manner, R., Manderick, B. (eds.) Parallel Problem Solving from Nature, pp. 67–76. Elsevier, Amsterdam (1992)

    Google Scholar 

  29. Calégari, P., Coray, G., Hertz, A., Kobler, D., Kuonen, P.: A taxonomy of evolutionary algorithms in combinatorial optimization. Journal of Heuristics 5(2), 145–158 (1999)

    Article  MATH  Google Scholar 

  30. Greistorfer, P., Voß, S.: Controlled pool maintenance in combinatorial optimization. In: Rego, C., Alidaee, B. (eds.) Metaheuristic Optimization via Memory and Evolution – Tabu Search and Scatter Search. Operations Research/Computer Science Interfaces, vol. 30, pp. 382–424. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  31. Voß, S.: Hybridizing metaheuristics: The road to success in problem solving. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906, Springer, Heidelberg (2006), http://www.ads.tuwien.ac.at/evocop/Media:Invited-talk-EvoCOP2006-voss.pdf

    Google Scholar 

  32. Fink, A., Voß, S.: HotFrame: A heuristic optimization framework. In: Optimization Software Class Libraries. OR/CS Interfaces Series, Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  33. Wagner, D.: Eine generische Bibliothek für Metaheuristiken und ihre Anwendung auf das Quadratic Assignment Problem. Master’s thesis, Vienna University of Technology, Institute of Computer Graphics and Algorithms (2005)

    Google Scholar 

  34. Voß, S., Woodruff, D.L. (eds.): Optimization Software Class Libraries. OR/CS Interfaces Series. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  35. Marriott, K., Stuckey, P.: Programming with Constraints. The MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  36. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. John Wiley, Chichester (1988)

    MATH  Google Scholar 

  37. Focacci, F., Laburthe, F., Lodi, A.: Local search and constraint programming. In: Handbook of Metaheuristics, vol. 57, pp. 369–403. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  38. Puchinger, J., Raidl, G.R., Gruber, M.: Cooperating memetic and branch-and-cut algorithms for solving the multidimensional knapsack problem. In: Proceedings of MIC 2005, the 6th Metaheuristics International Conference, Vienna, Austria, pp. 775–780 (2005)

    Google Scholar 

  39. Fischetti, M., Lodi, A.: Local Branching. Mathematical Programming Series B 98, 23–47 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raidl, G.R. (2006). A Unified View on Hybrid Metaheuristics. In: Almeida, F., et al. Hybrid Metaheuristics. HM 2006. Lecture Notes in Computer Science, vol 4030. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11890584_1

Download citation

  • DOI: https://doi.org/10.1007/11890584_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46384-9

  • Online ISBN: 978-3-540-46385-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy