Skip to main content

An Energy-Efficient Computing Approach by Filling the Connectome Gap

  • Conference paper
Unconventional Computation and Natural Computation (UCNC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8553))

  • 1382 Accesses

Abstract

This paper presents an energy-efficient neuromorphic computing approach by filling the connectome gap between algorithm, brain, and VLSI. The gap exists in structural features such as the average number of synaptic connections per neural node as well as in dimensional features. We argue that the energy dissipation in complex computing tasks is more predominantly bounded by the control processes that synchronize and redirect both computing processes and data rather than the computing processes themselves. Therefore, it is crucial to fill the connectome gap and to avoid excessive interactions of the computing process and data with the control processes when achieving energy-efficient computing for large-scale cognitive computing tasks. The use of freespace optics is proposed as a means to efficiently handle sparse but still heavily entangled connections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Landauer, R.: Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5, 183–191 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bennett, C.H.: Logical Reversibility of Computation. IBM Journal of Research and Development 17, 525–532 (1973)

    Article  MATH  Google Scholar 

  3. Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Physica D 120, 188–195 (1998)

    Article  Google Scholar 

  4. Katayama, Y.: On Entropic Aspects of VLSI Designs. In: IEEE International Midwest Symposium on Circuits and Systems (2004)

    Google Scholar 

  5. Kestor, G., Gioiosa, R., Kerbyson, D.J., Hoisie, A.: Quantifying the energy cost of data movement in scientific applications. In: IEEE International Symposium on Workload Characterization, IISWC (2013)

    Google Scholar 

  6. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters 10 (2010)

    Google Scholar 

  7. Sharad, M., Augustine, C., Panagopolous, G., Roy, K.: Proposal for Neuromorphic Hardware using Spin Devices, arXiv:1206.3227 (2012)

    Google Scholar 

  8. Esser, S.K., et al.: Cognitive Computing Systems: Algorithms and Applications for Networks of Neurosynaptic Cores. In: Proceedings of the International Joint Conference on Neural Networks in Dallas, TX (August 2013)

    Google Scholar 

  9. Chang, L., Frank, D.J., Montoye, R.K., Koester, S.J., Ji, B.L., Coteus, P.W., Dennard, R.H., Haensch, W.: Practical strategies for power-efficient computing technologies. In: IEEE Proc., vol. 98 (2010)

    Google Scholar 

  10. Kaiser, M.: A Tutorial in Connectome Analysis: Topological and Spatial Features of Brain Networks. Neuroimage 57(3), 892–907 (2011)

    Article  Google Scholar 

  11. Bakoglu, H.B., Meindl, J.D.: A system-level circuit model for multi- and single-chip CPUs. In: ISSCC, pp. 308–309 (1987)

    Google Scholar 

  12. Beiu, V., et al.: On Two-layer Brain-inspired Hierarchical Topologies - A Rent’s Rule Approach - Transactions on High-Performance Embedded Architectures and Compilers IV, pp. 311–333 (2011)

    Google Scholar 

  13. Sporns, O., Tononi, G., Kötter, R.: The Human Connectome: A Structural Description of the Human Brain. PLOD Computational Biology, 245-251 (2005)

    Google Scholar 

  14. http://www.humanconnectomeproject.org/

  15. Zhang, K., Sejnowski, T.J.: A universal scaling law between gray matter and white matter of cerebral cortex. PNAS 97(10), 5621–5626 (2000)

    Article  Google Scholar 

  16. Arenzon, J.J., Lemke, L.: Simulating highly diluted neural networks. J. Phys. A: Math. Gen. 27, 5161–5165 (1994)

    Article  MATH  Google Scholar 

  17. Gripon, V., Berrou, C.: Sparse Neural Networks With Large Learning Diversity. IEEE Trans. Neural Networks 22, 1087–1096 (2011)

    Article  Google Scholar 

  18. Hebb, D.O.: The Organization of Behavior. Wiley & Sons, New York (1949)

    Google Scholar 

  19. Caporale, N., Dan, Y.: Spike timing-dependent plasticity: A Hebbian learning rule. Annual Review of Neuroscience 31, 25–46 (2008)

    Article  Google Scholar 

  20. Hopfield, J.J.: Neural network and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  21. Kalman, R.E.: http://www.inamori-f.or.jp/laureates/k01_a_rudolf/img/lct_e.pdf

  22. Russell, B., Stepney, S.: Geometric Methods for Analysing Quantum Speed Limits: Time-Dependent Controlled Quantum Systems with Constrained Control Functions. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 198–208. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Katayama, Y.: New complementary logic circuits using coupled open quantum systems. IEEE Trans. Nanotechnology 4, 527–532 (2005)

    Article  Google Scholar 

  24. Parhami, B.: Introduction to Parallel Processing: Algorithms and Architectures. Plenum Press, New York (1999)

    Google Scholar 

  25. Xue, J., et al.: An intra-chip free-space optical interconnect. ISCA (2010)

    Google Scholar 

  26. Wang, K., et al.: Experimental demonstration of high-speed freespace reconfigurable card-to-card optical interconnects. Optics Express (2013)

    Google Scholar 

  27. Katayama, Y., Okazaki, O., Ohba, N.: Software-defined massive multicore networking via freespace optical interconnect. In: ACM Conf. Computing Frontiers (2013)

    Google Scholar 

  28. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neuro Computation, 1527-1554 (2006)

    Google Scholar 

  29. Rast, A.D., Welbourne, S., Jin, X., Furber, S.B.: Optimal Connectivity in Hardware-Targetted MLP Networks. In: International Joint Conference on Neural Networks (2009)

    Google Scholar 

  30. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, Hoboken (2006)

    MATH  Google Scholar 

  31. Averbeck, B.B., Latham, P.E., Pouget, A.: Neural correlations, population coding and computation. Nature Reviews Neuroscience 7, 358–366 (2006)

    Article  Google Scholar 

  32. Dehaene, S.: The neural basis of the Weber-Fechner law: A logarithmic mental number line. TRENDS in Cognitive Science 7(4) (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunao Katayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Katayama, Y., Yamane, T., Nakano, D. (2014). An Energy-Efficient Computing Approach by Filling the Connectome Gap. In: Ibarra, O., Kari, L., Kopecki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2014. Lecture Notes in Computer Science(), vol 8553. Springer, Cham. https://doi.org/10.1007/978-3-319-08123-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08123-6_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08122-9

  • Online ISBN: 978-3-319-08123-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy