Abstract
This paper presents an energy-efficient neuromorphic computing approach by filling the connectome gap between algorithm, brain, and VLSI. The gap exists in structural features such as the average number of synaptic connections per neural node as well as in dimensional features. We argue that the energy dissipation in complex computing tasks is more predominantly bounded by the control processes that synchronize and redirect both computing processes and data rather than the computing processes themselves. Therefore, it is crucial to fill the connectome gap and to avoid excessive interactions of the computing process and data with the control processes when achieving energy-efficient computing for large-scale cognitive computing tasks. The use of freespace optics is proposed as a means to efficiently handle sparse but still heavily entangled connections.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Landauer, R.: Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5, 183–191 (1961)
Bennett, C.H.: Logical Reversibility of Computation. IBM Journal of Research and Development 17, 525–532 (1973)
Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Physica D 120, 188–195 (1998)
Katayama, Y.: On Entropic Aspects of VLSI Designs. In: IEEE International Midwest Symposium on Circuits and Systems (2004)
Kestor, G., Gioiosa, R., Kerbyson, D.J., Hoisie, A.: Quantifying the energy cost of data movement in scientific applications. In: IEEE International Symposium on Workload Characterization, IISWC (2013)
Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters 10 (2010)
Sharad, M., Augustine, C., Panagopolous, G., Roy, K.: Proposal for Neuromorphic Hardware using Spin Devices, arXiv:1206.3227 (2012)
Esser, S.K., et al.: Cognitive Computing Systems: Algorithms and Applications for Networks of Neurosynaptic Cores. In: Proceedings of the International Joint Conference on Neural Networks in Dallas, TX (August 2013)
Chang, L., Frank, D.J., Montoye, R.K., Koester, S.J., Ji, B.L., Coteus, P.W., Dennard, R.H., Haensch, W.: Practical strategies for power-efficient computing technologies. In: IEEE Proc., vol. 98 (2010)
Kaiser, M.: A Tutorial in Connectome Analysis: Topological and Spatial Features of Brain Networks. Neuroimage 57(3), 892–907 (2011)
Bakoglu, H.B., Meindl, J.D.: A system-level circuit model for multi- and single-chip CPUs. In: ISSCC, pp. 308–309 (1987)
Beiu, V., et al.: On Two-layer Brain-inspired Hierarchical Topologies - A Rent’s Rule Approach - Transactions on High-Performance Embedded Architectures and Compilers IV, pp. 311–333 (2011)
Sporns, O., Tononi, G., Kötter, R.: The Human Connectome: A Structural Description of the Human Brain. PLOD Computational Biology, 245-251 (2005)
Zhang, K., Sejnowski, T.J.: A universal scaling law between gray matter and white matter of cerebral cortex. PNAS 97(10), 5621–5626 (2000)
Arenzon, J.J., Lemke, L.: Simulating highly diluted neural networks. J. Phys. A: Math. Gen. 27, 5161–5165 (1994)
Gripon, V., Berrou, C.: Sparse Neural Networks With Large Learning Diversity. IEEE Trans. Neural Networks 22, 1087–1096 (2011)
Hebb, D.O.: The Organization of Behavior. Wiley & Sons, New York (1949)
Caporale, N., Dan, Y.: Spike timing-dependent plasticity: A Hebbian learning rule. Annual Review of Neuroscience 31, 25–46 (2008)
Hopfield, J.J.: Neural network and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 79, 2554–2558 (1982)
Kalman, R.E.: http://www.inamori-f.or.jp/laureates/k01_a_rudolf/img/lct_e.pdf
Russell, B., Stepney, S.: Geometric Methods for Analysing Quantum Speed Limits: Time-Dependent Controlled Quantum Systems with Constrained Control Functions. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 198–208. Springer, Heidelberg (2013)
Katayama, Y.: New complementary logic circuits using coupled open quantum systems. IEEE Trans. Nanotechnology 4, 527–532 (2005)
Parhami, B.: Introduction to Parallel Processing: Algorithms and Architectures. Plenum Press, New York (1999)
Xue, J., et al.: An intra-chip free-space optical interconnect. ISCA (2010)
Wang, K., et al.: Experimental demonstration of high-speed freespace reconfigurable card-to-card optical interconnects. Optics Express (2013)
Katayama, Y., Okazaki, O., Ohba, N.: Software-defined massive multicore networking via freespace optical interconnect. In: ACM Conf. Computing Frontiers (2013)
Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neuro Computation, 1527-1554 (2006)
Rast, A.D., Welbourne, S., Jin, X., Furber, S.B.: Optimal Connectivity in Hardware-Targetted MLP Networks. In: International Joint Conference on Neural Networks (2009)
Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, Hoboken (2006)
Averbeck, B.B., Latham, P.E., Pouget, A.: Neural correlations, population coding and computation. Nature Reviews Neuroscience 7, 358–366 (2006)
Dehaene, S.: The neural basis of the Weber-Fechner law: A logarithmic mental number line. TRENDS in Cognitive Science 7(4) (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Katayama, Y., Yamane, T., Nakano, D. (2014). An Energy-Efficient Computing Approach by Filling the Connectome Gap. In: Ibarra, O., Kari, L., Kopecki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2014. Lecture Notes in Computer Science(), vol 8553. Springer, Cham. https://doi.org/10.1007/978-3-319-08123-6_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-08123-6_19
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08122-9
Online ISBN: 978-3-319-08123-6
eBook Packages: Computer ScienceComputer Science (R0)