Skip to main content

Exploiting Anti-monotonicity of Multi-label Evaluation Measures for Inducing Multi-label Rules

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10937))

Included in the following conference series:

Abstract

Exploiting dependencies between labels is considered to be crucial for multi-label classification. Rules are able to expose label dependencies such as implications, subsumptions or exclusions in a human-comprehensible and interpretable manner. However, the induction of rules with multiple labels in the head is particularly challenging, as the number of label combinations which must be taken into account for each rule grows exponentially with the number of available labels. To overcome this limitation, algorithms for exhaustive rule mining typically use properties such as anti-monotonicity or decomposability in order to prune the search space. In the present paper, we examine whether commonly used multi-label evaluation metrics satisfy these properties and therefore are suited to prune the search space for multi-label heads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    scene (6, 1.06), emotions (6, 1.87), flags (7, 3.39), yeast (14, 4.24), birds (19, 1.01), genbase (27, 1.25), medical (45, 1.24), cal500 (174, 26.15), with respective number of labels and cardinality, from http://mulan.sf.net. Source code and results are available at https://github.com/keelm/SeCo-MLC.

References

  1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328 (1995)

    Google Scholar 

  2. Allamanis, M., Tzima, F.A., Mitkas, P.A.: Effective rule-based multi-label classification with learning classifier systems. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds.) ICANNGA 2013. LNCS, vol. 7824, pp. 466–476. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37213-1_48

    Chapter  Google Scholar 

  3. Arunadevi, J., Rajamani, V.: An evolutionary multi label classification using associative rule mining for spatial preferences. Int. J. Comput. Appl. 3(3), 28–37 (2011). Special Issue on Artificial Intelligence Techniques - Novel Approaches and Practical Applications. https://www.ijcaonline.org/specialissues/ait/number3, ISBN 978-93-80746-68-2

  4. Ávila-Jiménez, J.L., Gibaja, E., Ventura, S.: Evolving multi-label classification rules with gene expression programming: a preliminary study. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) HAIS 2010. LNCS (LNAI), vol. 6077, pp. 9–16. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13803-4_2

    Chapter  Google Scholar 

  5. Bosc, G., Golebiowski, J., Bensafi, M., Robardet, C., Plantevit, M., Boulicaut, J.-F., Kaytoue, M.: Local subgroup discovery for eliciting and understanding new structure-odor relationships. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 19–34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_2

    Chapter  Google Scholar 

  6. Charte, F., Rivera, A.J., del Jesús, M.J., Herrera, F.: LI-MLC: a label inference methodology for addressing high dimensionality in the label space for multilabel classification. IEEE Trans. Neural Netw. Learn. Syst. 25(10), 1842–1854 (2014)

    Article  Google Scholar 

  7. Dembczyński, K., Waegeman, W., Cheng, W., Hüllermeier, E.: On label dependence and loss minimization in multi-label classification. Mach. Learn. 88(1–2), 5–45 (2012)

    Article  MathSciNet  Google Scholar 

  8. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Kayande, U., De Bruyn, A., Lilien, G.L., Rangaswamy, A., Van Bruggen, G.H.: How incorporating feedback mechanisms in a DSS affects DSS evaluations. Inf. Syst. Res. 20(4), 527–546 (2009)

    Article  Google Scholar 

  10. Li, B., Li, H., Wu, M., Li, P.: Multi-label classification based on association rules with application to scene classification. In: Proceedings of the 9th International Conference for Young Computer Scientists (ICYCS 2008), pp. 36–41. IEEE Computer Society (2008)

    Google Scholar 

  11. Loza Mencía, E., Janssen, F.: Learning rules for multi-label classification: a stacking and a separate-and-conquer approach. Mach. Learn. 105(1), 77–126 (2016)

    Article  MathSciNet  Google Scholar 

  12. Malerba, D., Semeraro, G., Esposito, F.: A multistrategy approach to learning multiple dependent concepts. In: Nakhaeizadeh, G., Taylor, C.C. (eds.) Machine Learning and Statistics: The Interface, pp. 87–106. Wiley, London (1997)

    Google Scholar 

  13. Papagiannopoulou, C., Tsoumakas, G., Tsamardinos, I.: Discovering and exploiting deterministic label relationships in multi-label learning. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 915–924 (2015)

    Google Scholar 

  14. Park, S.H., Fürnkranz, J.: Multi-label classification with label constraints. In: Proceedings of the ECML PKDD 2008 Workshop on Preference Learning (PL 2008), pp. 157–171 (2008)

    Google Scholar 

  15. Thabtah, F., Cowling, P., Peng, Y.: Multiple labels associative classification. Knowl. Inf. Syst. 9(1), 109–129 (2006)

    Article  Google Scholar 

  16. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-09823-4_34

    Chapter  Google Scholar 

Download references

Acknowledgements

We acknowledge support by the German Research Foundation (DFG) (grant number FU 580/11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eneldo Loza Mencía .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rapp, M., Loza Mencía, E., Fürnkranz, J. (2018). Exploiting Anti-monotonicity of Multi-label Evaluation Measures for Inducing Multi-label Rules. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10937. Springer, Cham. https://doi.org/10.1007/978-3-319-93034-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93034-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93033-6

  • Online ISBN: 978-3-319-93034-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy