Skip to main content

A New Algorithm for Optimal Constraint Satisfaction and Its Implications

  • Conference paper
Automata, Languages and Programming (ICALP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3142))

Included in the following conference series:

Abstract

We present a novel method for exactly solving (in fact, counting solutions to) general constraint satisfaction optimization with at most two variables per constraint (e.g. MAX-2-CSP and MIN-2-CSP), which gives the first exponential improvement over the trivial algorithm. More precisely, the runtime bound has a constant factor improvement in the base of the exponent: the algorithm can count the number of optima in MAX-2-SAT and MAX-CUT instances in O(m 3 2ωn/3) time, where ω < 2.376 is the matrix product exponent over a ring. When constraints have arbitrary weights, there is a (1+ε)-approximation with roughly the same runtime, modulo polynomial factors. Our construction shows that improvement in the runtime exponent of either k-clique solution (even when k = 3) or matrix multiplication over GF(2) would improve the runtime exponent for solving 2-CSP optimization. The overall approach also yields connections between the complexity of some (polynomial time) high dimensional search problems and some NP-hard problems. For example, if there are sufficiently faster algorithms for computing the diameter of n points in ℓ1, then there is an (2–ε)n algorithm for MAX-LIN. These results may be construed as either lower bounds on the high-dimensional problems, or hope that better algorithms exist for the corresponding hard problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alber, J., Gramm, J., Niedermeier, R.: Faster exact algorithms for hard problems: a parameterized point of view. Discrete Mathematics 229, 3–27 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alon, N., Naor, M.: Derandomization, witnesses for Boolean matrix multiplication and construction of perfect hash functions. Algorithmica 16, 434–449 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bansal, N., Raman, V.: Upper bounds for Max-Sat: Further Improved. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 247–258. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Charikar, M., Indyk, P., Panigrahy, R.: New Algorithms for Subset Query, Partial Match, Orthogonal Range Searching, and Related Problems. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 451–462. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Chen, J., Kanj, I.: Improved Exact Algorithms for MAX-SAT. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 341–355. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Coppersmith, D., Winograd, S.: Matrix Multiplication via Arithmetic Progressions. JSC 9(3), 251–280 (1990)

    MATH  MathSciNet  Google Scholar 

  7. Gramm, J., Niedermeier, R.: Faster exact solutions for Max2Sat. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 174–186. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Gramm, J., Hirsch, E.A., Niedermeier, R., Rossmanith, P.: Worst-case upper bounds for MAX-2-SAT with application to MAX-CUT. Discrete Applied Mathematics 130(2), 139–155 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dantsin, E., Gavrilovich, M., Hirsch, E.A., Konev, B.: MAX-SAT approximation beyond the limits of polynomial-time approximation. Annals of Pure and Applied Logic 113(1-3), 81–94 (2001)

    Article  MathSciNet  Google Scholar 

  10. Hirsch, E.A.: Worst-case study of local search for MAX-k-SAT. Discrete Applied Mathematics 130(2), 173–184 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hirsch, E.A.: A 2m/4-time Algorithm for MAX-2-SAT: Corrected Version. Electronic Colloquium on Computational Complexity Report TR99-036 (2000)

    Google Scholar 

  12. Hofmeister, T., Schöning, U., Schuler, R., Watanabe, O.: A probabilistic 3-SAT algorithm further improved. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 192–202. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. JACM 21, 277–292 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  14. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Computing 7(4), 413–423 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kulikov, A.S., Fedin, S.S.: A 2|E|/4-time Algorithm for MAX-CUT. Zapiski nauchnyh seminarov POMI No.293, 129–138 (2002)

    Google Scholar 

  16. Mahajan, M., Raman, V.: Parameterizing above Guaranteed Values: MAXSAT and MAXCUT. J. Algorithms 31(2), 335–354 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nesetril, J., Poljak, S.: On the complexity of the subgraph problem. Commentationes Mathematicae Universitatis Carolinae 26(2), 415–419 (1985)

    MATH  MathSciNet  Google Scholar 

  18. Niedermeier, R., Rossmanith, P.: New upper bounds for maximum satisfiability. J. Algorithms 26, 63–88 (2000)

    Article  MathSciNet  Google Scholar 

  19. Paturi, R., Pudlak, P., Saks, M.E., Zane, F.: An improved exponential-time algorithm for k-SAT. In: Proceedings of the 39th IEEE FOCS, pp. 628–637 (1998)

    Google Scholar 

  20. Raman, V., Ravikumar, B., Srinivasa Rao, S.: A Simplified NP-Complete MAXSAT problem. Information Processing Letters 65, 1–6 (1998)

    Article  MathSciNet  Google Scholar 

  21. Rivest, R.: Partial match retrieval algorithms. SIAM J. on Computing 5, 19–50 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  22. Robson, M.: Algorithms for maximum independent sets. J. Algorithms 7(3), 425–440 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ruskey, F.: Simple combinatorial Gray codes constructed by reversing sublists. In: Ng, K.W., Balasubramanian, N.V., Raghavan, P., Chin, F.Y.L. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 201–208. Springer, Heidelberg (1993)

    Google Scholar 

  24. Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction problems. In: Proceedings of the 40th IEEE FOCS, pp. 410–414 (1999)

    Google Scholar 

  25. Schroeppel, R., Shamir, A.: A T=O(2n/2), S=O(2n/4) Algorithm for Certain NP-Complete Problems. SIAM J. Comput. 10(3), 456–464 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  26. Schuler, R.: An algorithm for the satisfiability problem of formulas in conjunctive normal form. Accepted in J. Algorithms (2003)

    Google Scholar 

  27. Scott, A., Sorkin, G.: Faster Algorithms for MAX CUT and MAX CSP, with Polynomial Expected Time for Sparse Instances. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 382–395. Springer, Heidelberg (2003)

    Google Scholar 

  28. Williams, R.: A new algorithm for optimal constraint satisfaction and its implications. Electronic Colloquium on Computational Complexity, Report TR04-032 (2004)

    Google Scholar 

  29. Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  30. Zwick, U.: All Pairs Shortest Paths using bridging sets and rectangular matrix multiplication. JACM 49(3), 289–317 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Williams, R. (2004). A New Algorithm for Optimal Constraint Satisfaction and Its Implications. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds) Automata, Languages and Programming. ICALP 2004. Lecture Notes in Computer Science, vol 3142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27836-8_101

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27836-8_101

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22849-3

  • Online ISBN: 978-3-540-27836-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy