Abstract
We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperparameters using the marginal likelihood. We explain the practical advantages of Gaussian Process and end with conclusions and a look at the current trends in GP work.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Williams, C.K.I.: Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In: Jordan, M.I. (ed.) Learning in Graphical Models, pp. 599–621. Kluwer Academic, Dordrecht (1998)
MacKay, D.J.C.: Gaussian processes — a replacement for supervised neural networks?. Tutorial lecture notes for NIPS 1997 (1997)
Williams, C.K.I., Barber, D.: Bayesian classification with Gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(12), 1342–1351 (1998)
Csató, L., Opper, M.: Sparse on-line Gaussian processes. Neural Computation 14, 641–668 (2002)
Neal, R.M.: Regression and classification using Gaussian process priors (with discussion). In: Bernardo, J.M., et al. (eds.) Bayesian statistics, vol. 6, pp. 475–501. Oxford University Press, Oxford (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Rasmussen, C.E. (2004). Gaussian Processes in Machine Learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds) Advanced Lectures on Machine Learning. ML 2003. Lecture Notes in Computer Science(), vol 3176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28650-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-28650-9_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23122-6
Online ISBN: 978-3-540-28650-9
eBook Packages: Springer Book Archive