Abstract
A family of functions is weakly pseudorandom if a random member of the family is indistinguishable from a uniform random function when queried on random inputs. We point out a subtle ambiguity in the definition of weak PRFs: there are natural weak PRFs whose security breaks down if the randomness used to sample the inputs is revealed. To capture this ambiguity we distinguish between public-coin and secret-coin weak PRFs.
We show that the existence of a secret-coin weak PRF which is not also a public-coin weak PRF implies the existence of two pass key-agreement (i.e. public-key encryption). So in Minicrypt, i.e. under the assumption that one-way functions exist but public-key cryptography does not, the notion of public- and secret-coin weak PRFs coincide.
Previous to this paper all positive cryptographic statements known to hold exclusively in Minicrypt concerned the adaptive security of constructions using non-adaptively secure components. Weak PRFs give rise to a new set of statements having this property. As another example we consider the problem of range extension for weak PRFs. We show that in Minicrypt one can beat the best possible range expansion factor (using a fixed number of distinct keys) for a very general class of constructions (in particular, this class contains all constructions that are known today).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bao, F., Deng, R.H., Zhu, H.: Variations of Diffie-Hellman problem. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836. Springer, Heidelberg (2003)
Damgård, I., Nielsen, J.B.: Expanding pseudorandom functions; or: From known-plaintext security to chosen-plaintext security. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 449–464. Springer, Heidelberg (2002)
Dent, A.: Cryptography in a hitchhiker’s universe. Journal of Craptology 4 (2007)
Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory IT-22(6), 644–654 (1976)
Dubrov, B., Ishai, Y.: On the randomness complexity of efficient sampling. In: Proc. 38th ACM Symposium on the Theory of Computing (STOC), pp. 711–720 (2006)
Dziembowski, S.: On forward-secure storage. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 251–270. Springer, Heidelberg (2006)
El-Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)
Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. II. Cambridge University Press, Cambridge (2004)
Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)
Haitner, I., Harnik, D., Reingold, O.: Efficient pseudorandom generators from exponentially hard one-way functions. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 228–239. Springer, Heidelberg (2006)
Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)
Holenstein, T.: Personal Communication (2005)
Holenstein, T.: Immunization of key-agreement schemes. PhD thesis, ETH Zürich (2006) ISBN 3-86628-088-2
Holenstein, T.: Pseudorandom generators from one-way functions: A simple construction for any hardness. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 443–461. Springer, Heidelberg (2006)
Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 92–105. Springer, Heidelberg (2004)
Impagliazzo, R.: A personal view of average-case complexity. In: Structure in Complexity Theory Conference, pp. 134–147 (1995)
Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based cryptography (extended abstract). In: IEEE Symposium on the Foundations of Computer Science (FOCS) 1989, pp. 230–235 (1989)
Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Proc. 21th ACM Symposium on the Theory of Computing (STOC), pp. 44–61 (1989)
Maurer, U., Oswald, Y.A., Pietrzak, K., Sjödin, J.: Luby-Rackoff ciphers from weak round functions? In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 391–408. Springer, Heidelberg (2006)
Maurer, U.M., Sjödin, J.: A fast and key-efficient reduction of chosen-ciphertext to known-plaintext security. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 498–516. Springer, Heidelberg (2007)
Minematsu, K., Tsunoo, Y.: Expanding weak PRF with small key size. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 284–298. Springer, Heidelberg (2006)
Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346. Springer, Heidelberg (1999)
Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. J. of the ACM 51(2), 231–262 (2004)
Pietrzak, K.: Composition implies adaptive security in minicrypt. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 328–338. Springer, Heidelberg (2006)
Pietrzak, K., Sjödin, J.: Domain extension for weak PRFs; the good, the bad, and the ugly. In: Advances in Cryptology — EUROCRYPT 2007, vol. 4515, pp. 517–533. Springer, Heidelberg (2007)
Wee, H.: Finding pessiland. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 429–442. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pietrzak, K., Sjödin, J. (2008). Weak Pseudorandom Functions in Minicrypt . In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds) Automata, Languages and Programming. ICALP 2008. Lecture Notes in Computer Science, vol 5126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70583-3_35
Download citation
DOI: https://doi.org/10.1007/978-3-540-70583-3_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70582-6
Online ISBN: 978-3-540-70583-3
eBook Packages: Computer ScienceComputer Science (R0)