Abstract
One of the potent personalization technologies powering the adaptive web is collaborative filtering. Collaborative filtering (CF) is the process of filtering or evaluating items through the opinions of other people. CF technology brings together the opinions of large interconnected communities on the web, supporting filtering of substantial quantities of data. In this chapter we introduce the core concepts of collaborative filtering, its primary uses for users of the adaptive web, the theory and practice of CF algorithms, and design decisions regarding rating systems and acquisition of ratings. We also discuss how to evaluate CF systems, and the evolution of rich interaction interfaces. We close the chapter with discussions of the challenges of privacy particular to a CF recommendation service and important open research questions in the field.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adomavicius, G., Tuzhilin, A.: Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)
Aggarwal, C.C., Wolf, J., Wu, K.L., Yu, P.S.: Horting Hatches an Egg: A New Graph-Theoretic Approach to Collaborative Filtering. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge discovery and data mining, San Diego, California, pp. 201–212. ACM, New York (1999)
Avery, C., Resnick, P., Zeckhauser, R.: The Market for Evaluations. American Economic Review 89(3), 564–584 (1999)
Balabanovíc, M., Shoham, Y.: Fab: Content-Based, Collaborative Recommendation. Communications of the ACM 40(3), 66–72 (1997)
Basu, C., Hirsh, H., Cohen, W.W.: Recommendation. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence, Madison, Wisconsin, pp. 714–720. AAAI Press, Menlo Park (1998)
BBC Online News: Sony Admits Using Fake Reviewer, June 4 (2001), http://news.bbc.co.uk/1/hi/entertainment/film/1368666.stm
Berry, M.W., Dumais, S.T., O’Brian, G.W.: Using Linear Algebra for Intelligent Information Retrieval. Siam Review 37(4), 573–595 (1995)
Billsus, D., Pazzani, M.J.: Learning Collaborative Information Filters. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence. AAAI-98, Menlo Park, CA, pp. 46–94. Morgan Kaufmann, San Francisco (1998)
Breese, J.S., Heckerman, D., Kadie, C.: Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In: Proceeding of the Fourteenth Conference on Uncertainty in Artificial Intelligence. UAI, Madison, Wisconsin, pp. 43–52. Morgan Kaufmann, San Francisco (1998)
Burke, R.: Hybrid Web Recomender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg (2007)
Canny, J.: Collaborative Filtering with Privacy via Factor Analysis. In: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, Tampere, Finland, pp. 238–245. ACM Press, New York (2002)
Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., Sartin, M.: Combining Content-Based and Collaborative Filters in an Online Newspaper. In: Proceedings of the ACM SIGIR ’99 Workshop on Recommender Systems: Algorithms and Evaluation, Berkeley. ACM Press, New York (1999)
Condliff, M.K., Lewis, D., Madigan, D., Posse, C.: Bayesian Mixed-Effect Models for Recommender Systems. In: Proceedings of the SIGIR-99 Workshop on Recommender Systems: Algorithms and Evaluation, Berkeley, California (1999)
Cosley, D., Lam, S.K., Albert, I., Konstan, J.A., Riedl, J.: Is Seeing Believing?: How Recommender System Interfaces Affect Users’ Opinions. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 585–592. ACM Press, Ft. Lauderdale (2003)
Dahlen, B.J., Konstan, J.A., Herlocker, J., Riedl, J.: Jump-starting Movielens: User Benefits Of Starting A Collaborative Filtering System With “Dead Data”. TR 98-017, University of Minnesota
Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science 41(6), 159–168 (1998)
Delgado, J., Ishii, N.: Memory-Based Weighted Majority Prediction for Recommender Systems. In: 1999 SIGIR Workshop on Recommender Systems, pp. 1–5. University of California, Berkeley (1999)
Frankowski, D., Cosley, D., Sen, S., Terveen, L., Riedl, J.: You Are What You Say: Privacy Risks Of Public Mentions. In: Proceedings of SIGIR 2006, pp. 562–572 (2006)
Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using Collaborative Filtering To Weave An Information Tapestry. Communications of the ACM 35(12), 61–70
Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A Constant-Time Collaborative Filtering Algorithm. Information Retrieval 4(2), 133–151 (2001)
Good, N., Schafer, J.B., Konstan, J.A., Borchers, A., Sarwar, B., Herlocker, J., Riedl, J.: Combining Collaborative Filtering With Personal Agents For Better Recommendations. In: Proceedings of the Sixteenth National Conference on Artificial Intelligence, Orlando, pp. 439–446. AAAI Press, Menlo Park (1999)
Harper, F., Li, X., Chen, Y., Konstan, J.: An Economic Model Of User Rating In An Online Recommender System. In: Harper, F., Li, X., Chen, Y., Konstan, J. (eds.) Proceedings of the 10th International Conference on User Modeling, Edinburgh, UK, pp. 307–216 (2005)
Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite, R., Kadie, C.: Dependency Networks for Inference, Collaborative Filtering, and Data Visualization. Journal of Machine Learning Research, 49-75 (2001)
Herlocker, J., Konstan, J.A., Terveen, L.G., Reidl, J.: Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems 22(1), 5–53 (2004)
Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An Algorithmic Framework For Performing Collaborative Filtering. In: Proceedings of the 22nd International Conference on Research and Development in Information Retrieval. SIGIR ’99, Berkeley, pp. 230–237. ACM Press, New York (1999)
Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining Collaborative Filtering Recommendations. In: Herlocker, J.L., Konstan, J.A., Riedl, J. (eds.) Proceedings of the 2000 ACM conference on Computer supported cooperative work, Philadelphia, pp. 241–250. ACM Press, New York (2000)
Hill, W., Stead, L., Rosenstein, M., Furnas, G.: Recommending and Evaluating Choices in a Virtual Community of Use. In: Proceedings of ACM CHI’95 Conference on Human Factors in Computing Systems, Denver, pp. 194–201. ACM Press, New York (1995)
Hill, W.C., Hollan, J.D., Wroblewski, D., McCandless, T.: Edit Wear and Read Wear. In: Proceedings of the SIGCHI conference on Human factors in Computing Systems, Monterey, pp. 3–9. ACM Press, New York (1992)
Hofmann, T.: Latent Semantic Models For Collaborative Filtering. ACM Transactions on Information Systems 22(1), 89–115 (2004)
Höök, K., Benyon, D., Munro, A.: Footprints in the snow. In: Höök, K., Benyon, D., Munro, A. (eds.) Social Navigation of Information Space, Springer, London (2003)
Johnson, S.C.: Hierarchical Clustering Schemes. Psychometrika 32(3), 241–254 (1967)
Karypis, G.: Evaluation of Item-Based Top-N Recommendation Algorithms. 10th Conference of Information and Knowledge Management, CIKM, pp. 247–254 (2001)
Kobsa, A.: Privacy-Enhanced Web Personalization. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 620–670. Springer, Heidelberg (2007)
Konstan, J.A., Miller, B., Maltz, D., Herlocker, J., Gordon, L., Riedl, J.: GroupLens: Applying Collaborative Filtering To Usenet News. Communications of the ACM 40(3), 77–87
Lam, S.K., Riedl, J.: Shilling Recommender Systems For Fun And Profit. In: Proceedings of the 13th international conference on World Wide Web, pp. 393–402. ACM Press, New York (2004)
Lam, S.K., Frankowski, D., Riedl, J.: Do You Trust Your Recommendations? An Exploration Of Security And Privacy Issues In Recommender Systems. In: Proceedings of the 2006 International Conference on Emerging Trends in Information and Communication Security. ETRICS, Freiburg, Germany, pp. 14–29 (2006)
Lin, W.: Association Rule Mining for Collaborative Recommender Systems. Master’s Thesis, Worcester Polytechnic Institute (May 2000)
Linden, G., Smith, B., York, J.: Amazon.Com Recommendations: Item-To-Item Collaborative Filtering. IEEE Internet Computing 7(1), 76–80
Ludford, P.J., Cosley, D., Frankowski, D., Terveen, L.: Think Different: Increasing Online Community Participation Using Uniqueness And Group Dissimilarity. In: Proceedings of the SIGCHI conference on Human factors in computing systems, Vienna, Austria, pp. 631–638. ACM Press, New York (2004)
MacQueen, J.: Some Methods for Classification and Analysis of Multivariate Observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)
McLaughlin, M., Herlocker, J.: A Collaborative Filtering Algorithm and Evaluation Metric that Accurately Model the User Experience. In: Proceedings of the SIGIR Conference on Research and Development in Information Retrieval, pp. 329-336 (2004)
Maltz, D., Ehrlich, E.: Pointing The Way: Active Collaborative Filtering. In: Proceedings of ACM CHI’95 Conference on Human Factors in Computing Systems, pp. 202–209. ACM Press, New York (1995)
Miller, B.N., Konstan, J.A., Riedl, J.: Pocketlens: Toward A Personal Recommender System. ACM Trans. Inf. Syst. 22(3), 437–476 (2004)
Mobasher, B.: Data Mining for Web Personalization. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 90–135. Springer, Heidelberg (2007)
Oard, D.W., Kim, J.: Implicit Feedback for Recommender Systems. In: Proceedings of the AAAI Workshop on Recommender Systems, Madison, Wisconsin (1998)
O’Connor, M., Cosley, D., Konstan, J.A., Riedl, J.: PolyLens: A Recommender System for Groups of Users. In: Proceedings of ECSCW 2001, Bonn, Germany, pp. 199–218 (2001)
O’Mahoney, M.P., Hurley, N., Kushmerick, N., Silvestre, G.: Collaborative Recommendation: A Robustness Analysis. ACM Transactions on Internet Technology 4(3), 344–377 (2003)
Pazzani, M., Billsus, D.: Content-based Recommendation Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)
Popescul, A., Ungar, L.H., Pennock, D.M., Lawrence, S.: Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments, pp. 437–444 (2001)
Ramakrishnan, N., Keller, B.K., Mirza, B.J.: Privacy Risks in Recommender Systems. IEEE Internet Computing, 54-62 (2001)
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: An Open Architecture For Collaborative Filtering Of Netnews. In: Proceedings of the 1994 ACM conference on Computer supported cooperative work, Chapel Hill, North Carolina, pp. 175–186. ACM Press, New York (1994)
Sarwar, B., Karypis, G., Konstan, J.A., Riedl, J.: Item-Based Collaborative Filtering Recommendation Algorithms. In: Proceedings of the 10th international conference on World Wide Web, Hong Kong, pp. 285–295. ACM Press, New York (2001)
Sarwar, B., Karypis, G., Konstan, J.A., Riedl, J.: Incremental SVD-Based Algorithms for Highly Scaleable Recommender Systems. Proceedings of the Fifth International Conference on Computer and Information Technology (2002)
Sarwar, B., Karypis, G., Konstan, J.A., Riedl, J.: Application of Dimensionality Reduction in Recommender System–A Case Study. ACM WebKDD 2000 Web Mining for E-Commerce Workshop, Boston, Massachusetts (2000)
Schafer, J.B., Konstan, J.A., Riedl, J.: Meta-Recommendation Systems: User-Controlled Integration Of Diverse Recommendations. In: Proceedings of the Eleventh International Conference on Information And Knowledge Management, McLean, Virginia, pp. 43–51. ACM Press, New York (2002)
Schein, A.I., Popescul, A., Ungar, L.H.: Generative Models for Cold-Start Recommendations. In: Proceedings of the Twenty-third Annual International ACM SIGIR Workshop on Recommender Systems, New Orleans, Louisiana, ACM, New York (2001)
Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating “Word of Mouth”, pp. 210–217. ACM, New York (1995)
Smyth, B.: Case-based Recommendation. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 342–376. Springer, Heidelberg (2007)
Swearingen, K., Sinha, R.: Beyond Algorithms, An HCI perspective on Recommender Systems. In: 2001 SIGIR Workshop on Recommender Systems, New Orleans (2001)
Torres, R., McNee, S.M., Abel, M., Konstan, J.A., Riedl, J.: Enhancing Digital Libraries With Techlens+. In: Proceedings of the 4th ACM/IEEE-CS joint conference on Digital Libraries, Tuscon, AZ, USA, pp. 228–236. ACM Press, New York (2004)
Ungar, L.H., Foster, D.P.: Clustering Methods for Collaborative Filtering. In: Proceedings of the 1998 Workshop on Recommender Systems, AAAI Press, Menlo Park (1998)
Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving Recommendation Lists Through Topic Diversification. In: Proceedings of the Fourteenth International World Wide Web Conference, WWW2005, pp. 22–32 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this chapter
Cite this chapter
Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S. (2007). Collaborative Filtering Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds) The Adaptive Web. Lecture Notes in Computer Science, vol 4321. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72079-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-72079-9_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72078-2
Online ISBN: 978-3-540-72079-9
eBook Packages: Computer ScienceComputer Science (R0)