Abstract
This paper presents a neuro-fuzzy classifer for activity recognition using one triaxial accelerometer and feature reduction approaches. We use a triaxial accelerometer to acquire subjects’ acceleration data and train the neuro-fuzzy classifier to distinguish different activities/movements. To construct the neuro-fuzzy classifier, a modified mapping-constrained agglomerative clustering algorithm is devised to reveal a compact data configuration from the acceleration data. In addition, we investigate two different feature reduction methods, a feature subset selection and linear discriminate analysis. These two methods are used to determine the significant feature subsets and retain the characteristics of the data distribution in the feature space for training the neuro-fuzzy classifier. Experimental results have successfully validated the effectiveness of the proposed classifier.
Chapter PDF
Similar content being viewed by others
Keywords
References
Bao, L., Intille, S.S.: Activity Recognition from User-Annotated Acceleration Data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)
Chen, Y.-P., Yang, J.-Y., Liou, S.-N., Lee, G.-Y., Wang, J.-S.: Neural Classifiers for Activity Recognition Using Acceleration Measurements. In: Applied Mathematics and Computation (to appear)
Mathie, M.J., Celler, B.G., Lovell, N.H., Coster, A.C.F.: Classification of Basic Daily Movements Using a Triaxial Accelerometer. Medical and Biological Engineering and Computing 42(5), 679–687 (2004)
Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity Recognition from Accelerometer Data. In: Proceedings of the Seventeenth Innovative Applications of Artificial Intelligence Conference, pp. 1541–1546 (2005)
Tsymbal, A., Puuronen, S., Pechenizkiy, M., Baumgarten, M., Patterson, D.: Eigenvector-Based Feature Extraction for Classification. In: Proceedings of the Fifteenth International Florida Artificial Intelligence Research Society Conference, pp. 354–358.
Wang, S., Yang, J., Chen, N., Chen, X., Zhang, Q.: Human Activity Recognition with User-Free Accelerometers in the Sensor Networks. In: IEEE Int. Conf. Neural Networks and Brain, vol. 2, pp. 1212–1217 (2005)
Wang, J.-S., Lee, C.S.G.: Self-Adaptive Neuro-Fuzzy Inference Systems for Classification Applications. IEEE Trans. Fuzzy Systems 10(6), 790–802 (2002)
Ward, J.A., Lukowicz, P., Troster, G., Starner, T.E.: Activity Recognition of Assembly Task Using Body-Worn Microphones and Accelerometers. IEEE Trans. Pattern Analysis and Machine Intelligence 28(10), 1553–1567 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 IFIP International Federation for Information Processing
About this paper
Cite this paper
Yang, JY., Chen, YP., Lee, GY., Liou, SN., Wang, JS. (2007). Activity Recognition Using One Triaxial Accelerometer: A Neuro-fuzzy Classifier with Feature Reduction. In: Ma, L., Rauterberg, M., Nakatsu, R. (eds) Entertainment Computing – ICEC 2007. ICEC 2007. Lecture Notes in Computer Science, vol 4740. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74873-1_47
Download citation
DOI: https://doi.org/10.1007/978-3-540-74873-1_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74872-4
Online ISBN: 978-3-540-74873-1
eBook Packages: Computer ScienceComputer Science (R0)