Skip to main content

An Empirical Investigation of the Trade-Off between Consistency and Coverage in Rule Learning Heuristics

  • Conference paper
Discovery Science (DS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5255))

Included in the following conference series:

Abstract

In this paper, we argue that search heuristics for inductive rule learning algorithms typically trade off consistency and coverage, and we investigate this trade-off by determining optimal parameter settings for five different parametrized heuristics. This empirical comparison yields several interesting results. Of considerable practical importance are the default values that we establish for these heuristics, and for which we show that they outperform commonly used instantiations of these heuristics. We also gain some theoretical insights. For example, we note that it is important to relate the rule coverage to the class distribution, but that the true positive rate should be weighted more heavily than the false positive rate. We also find that the optimal parameter settings of these heuristics effectively implement quite similar preference criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asuncion, A., Newman, D.: UCI machine learning repository (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

  2. Cestnik, B.: Estimating probabilities: A crucial task in Machine Learning. In: Aiello, L. (ed.) Proceedings of the 9th European Conference on Artificial Intelligence (ECAI 1990), Stockholm, Sweden, pp. 147–150. Pitman (1990)

    Google Scholar 

  3. Cohen, W.W.: Fast Effective Rule Induction. In: Prieditis, A., Russell, S. (eds.) Proceedings of the 12th International Conference on Machine Learning, Tahoe City, CA, July 9–12, 1995, pp. 115–123. Morgan Kaufmann, San Francisco (1995), http://citeseer.nj.nec.com/cohen95fast.html

    Google Scholar 

  4. Demsar, J.: Statistical comparisons of classifiers over multiple datasets. Machine Learning Research (7), 1–30 (2006)

    Google Scholar 

  5. Fürnkranz, J.: Separate-and-Conquer Rule Learning. Artificial Intelligence Review 13(1), 3–54 (1999), citeseer.ist.psu.edu/26490.html

    Article  MATH  Google Scholar 

  6. Fürnkranz, J., Flach, P.A.: ROC ’n’ Rule Learning - Towards a Better Understanding of Covering Algorithms. Machine Learning 58(1), 39–77 (2005), http://www.cs.bris.ac.uk/Publications/Papers/2000264.pdf

    Article  MATH  Google Scholar 

  7. Janssen, F., Fürnkranz, J.: An empirical quest for optimal rule learning heuristics. Technical Report TUD-KE-2008-01, Knowledge Engineering Group, TU Darmstadt (2008), http://www.ke.informatik.tu-darmstadt.de/publications/reports/tud-ke-2008-01.pdf

  8. Janssen, F., Fürnkranz, J.: On meta-learning rule learning heuristics. In: Proceedings of the 7th IEEE Conference on Data Mining (ICDM 2007), Omaha, NE, pp. 529–534 (2007)

    Google Scholar 

  9. Klösgen, W.: Problems for Knowledge Discovery in Databases and their Treatment in the Statistics Interpreter Explora. International Journal of Intelligent Systems 7, 649–673 (1992)

    Article  MATH  Google Scholar 

  10. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York (1986)

    Google Scholar 

  11. Todorovski, L., Flach, P., Lavrac, N.: Predictive performance of weighted relative accuracy. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 255–264. Springer, Heidelberg (2000), http://www.cs.bris.ac.uk/Publications/Papers/1000516.pdf

    Chapter  Google Scholar 

  12. Witten, I.H., Frank, E.: Data Mining — Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2005), http://www.cs.waikato.ac.nz/~ml/weka/

    MATH  Google Scholar 

  13. Wrobel, S.: An Algorithm for Multi-relational discovery of Subgroups. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Berlin Heidelberg

About this paper

Cite this paper

Janssen, F., Fürnkranz, J. (2008). An Empirical Investigation of the Trade-Off between Consistency and Coverage in Rule Learning Heuristics. In: Jean-Fran, JF., Berthold, M.R., Horváth, T. (eds) Discovery Science. DS 2008. Lecture Notes in Computer Science(), vol 5255. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88411-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88411-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88410-1

  • Online ISBN: 978-3-540-88411-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy